彰 化 縣 彰 化 市成功段630等4筆地號地質鑽探及試驗分析工作

復統工程顧問股份有限公司

公司地址:台北市新生南路三段22巷7-8號

服務電話:(02)2362-9380

傳真電話:(02)2369-2846

E-mail: foun.tain01@msa.hinet.net

中華民國108年08月19日

錄

				貝	次
_	`	前言		••••	1
=	. `	工作	F內容	••••	2
		2.1	鑽探孔數	••••	2
		2.2	現場鑽探取樣與試驗	•••••	2
		2.3	室內試驗	•••••	3
		2.4	鑽探成果報告內容	•••••	5
Ξ	•	區域	战地質	••••	7
		3.1	地層	••••	7
		3.2	地質構造		7
四	`	基地	2地質及工程性質	••••	13
		4.1	基地地層分布	••••	13
		4.2	設計用簡化土層表	••••	16
		4.3	地下水概況	••••	17
五	•	地震	毫分析	••••	18
		5.1	地震概况及地震力分析	••••	18
		5.2	液化潛能分析	••••	21
		5.3	土壤地盤反力係數	••••	31
六	`	大地	2工程分析	••••	37
		6.1	基礎型式建議	••••	37
		6.2	基礎承載力分析		38
		6.3	基礎沉陷量分析		45
		6.4	地下水浮力之影響	•••••	47
		6.5	擋土設施之選擇		48

6.6 側向壓力之分析	49
6.7 開挖穩定性分析	51
6.7.1 擋土結構物貫入深度	51
6.7.2 砂湧之檢討	52
6.7.3 隆起之檢討	52
6.7.4 上舉力之檢討	53
七、施工方法與安全措施建議	54
7.1 開挖施工方法建議	54
7.2 開挖安全監測系統建議	55
7.3 開挖時周圍地盤沉陷量分析	59
八、結論及建議	62
周 月 	
圖 目 錄	坎
頁	次 6
頁 圖2.1 鑽孔位置示意圖	6
頁 圖2.1 鑽孔位置示意圖 圖3.1 基地位置圖	6 . 9
頁 圖2.1 鑽孔位置示意圖 圖3.1 基地位置圖 圖3.2 區域地質圖	6 . 9 . 10
頁 圖2.1 鑽孔位置示意圖 圖3.1 基地位置圖 圖3.2 區域地質圖 圖3.3 基地鄰近活動斷層分布圖	6 . 9 10 11
頁 圖2.1 鑽孔位置示意圖 圖3.1 基地位置圖 圖3.2 區域地質圖 圖3.3 基地鄰近活動斷層分布圖 圖3.4 彰化斷層斷層帶範圍圖	6 . 9 10 11 12
頁 圖2.1 鑽孔位置示意圖 圖3.1 基地位置圖 圖3.2 區域地質圖 圖3.3 基地鄰近活動斷層分布圖 圖3.4 彰化斷層斷層帶範圍圖 圖4.1 基地地層剖面圖	6 . 9 10 11 12 15
頁 圖2.1 鑽孔位置示意圖 圖3.1 基地位置圖 圖3.2 區域地質圖 圖3.3 基地鄰近活動斷層分布圖 圖3.4 彰化斷層斷層帶範圍圖 圖4.1 基地地層剖面圖 圖5.1 基地與車籠埔斷層關係圖	6 . 9 10 11 12 15 20
頁 圖2.1 鑽孔位置示意圖 圖3.1 基地位置圖 圖3.2 區域地質圖 圖3.3 基地鄰近活動斷層分布圖 圖3.4 彰化斷層斷層帶範圍圖 圖4.1 基地地層剖面圖 圖5.1 基地與車籠埔斷層關係圖 圖5.2 基地鄰近土壤液化潛勢分布圖	6 . 9 10 11 12 15 20 30
頁 圖2.1 鑽孔位置示意圖 圖3.1 基地位置圖 圖3.2 區域地質圖 圖3.3 基地鄰近活動斷層分布圖 圖3.4 彰化斷層斷層帶範圍圖 圖4.1 基地地層剖面圖 圖5.1 基地與車籠埔斷層關係圖 圖5.2 基地鄰近土壤液化潛勢分布圖 圖6.1 臨時性擋土結構側向壓力圖	6 . 9 10 11 12 15 20 30 50
頁 圖2.1 鑽孔位置示意圖 圖3.1 基地位置圖 圖3.2 區域地質圖 圖3.3 基地鄰近活動斷層分布圖 圖3.4 彰化斷層斷層帶範圍圖 圖4.1 基地地層剖面圖 圖5.1 基地與車籠埔斷層關係圖 圖5.2 基地鄰近土壤液化潛勢分布圖 圖6.1 臨時性擋上結構側向壓力圖 圖6.2 永久性擋上結構側向壓力圖	6 . 9 10 11 12 15 20 30 50
頁 圖2.1 鑽孔位置示意圖 圖3.1 基地位置圖 圖3.2 區域地質圖 圖3.3 基地鄰近活動斷層分布圖 圖3.4 彰化斷層斷層帶範圍圖 圖4.1 基地地層剖面圖 圖5.1 基地與車籠埔斷層關係圖 圖5.2 基地鄰近土壤液化潛勢分布圖 圖6.1 臨時性擋土結構側向壓力圖	6 . 9 10 11 12 15 20 30 50 51

圖6.5	隆起檢討	. 52
圖6.6	上舉力之檢討	53
圖7.1	凹槽型地表沉陷預測曲線	60
圖7.2	地表沉陷預測曲線	61
	表目錄	
	頁	次
表5.1	基地地盤種類計算表	19
表5.2	近斷層調整因子	19
表5.3	土壤參數折減係數D _E	25
表5.4	土層液化評估潛能表(1)	26
表5.5	土層液化評估潛能表(2)	27
表5.6	土層液化損害評估(1)	28
表5.7	土層液化損害評估(2)	29
表5.8	SPT-N值與Kv關係表	34
表5.9	基地土層Kh計算表	35
表5.10)基地土層Kh建議值	36
表6.1	支承力因素	40
表6.2	各項影響因素之計算式	41
表6.3	基礎尺寸與承載力關係表	42
表6.4	液化時基礎尺寸與承載力關係表	43
表6.5	基礎尺寸與承載力關係表(承載於粘土層)	44
表6.6	均布載重下柔性基礎垂直變形之影響因素	46
表7.1	一般建築工程監測儀器及頻率	56
表7.2	應變計劃表	57
表7.3	緊急狀況處理建議表	58

附 錄

附錄一 鑽孔地質柱狀剖面圖

附錄二 顆粒粒徑分佈曲線圖

附錄三 直接剪力試驗

附錄四 無圍壓縮試驗

附錄五 單向度壓密試驗

附錄六 三軸壓縮CIU試驗

附錄七 現場作業照片

附錄八 開挖面穩定分析

一、前 言

彰化縣彰化市成功段630、635、636、637等4筆地號土地,基於工程設計及將來施工之需要,故委託復統工程顧問股份有限公司(以下簡稱本公司),提供基地地質鑽探調查之服務工作。本公司於現場鑽探取樣完成後,隨即將土樣送交實驗室進行土壤試驗,今全部工作完成,謹提出本工作報告書以供參考。

二、工作內容

2.1 鑽探孔數

本案基地面積為1866平方公尺,根據建築技術規則建築 構造編第六十五條之規定,配合建築規畫及結構技師設計需 求等因素,本次鑽探孔數為4個鑽探孔,其相關位置如圖2.1 鑽孔位置示意圖所示。

2.2 現場鑽探取樣與試驗

現場鑽探取樣包括地質鑽探、標準貫入試驗、劈管取樣及薄管取樣。

本工程現場鑽探及取樣工作中,土層採用側沖式鑽及用水洗法清孔,即採用螺旋鑽或套管鑽頭將鑽孔土壤清除。卵礫石層使用套管衝擊法鑽孔。岩層則使用三層式岩心管鑽孔,並提取岩心,以供研判岩石之性質。在鑽探工作過程中使用套管防止孔壁坍塌,於完工後測量其鑽孔內地下水位,以供參考。

每孔鑽探過程中每隔1.5公尺或地層變化處作一次標準貫入試驗,同時並採取劈管取樣工作,其程序:首先把鑽桿連接2吋劈管取樣貫入器放至鑽孔中預定試驗之深度,將63.5公斤夯錘提升至76公分之落距,分三次各貫入土層內15公分, 共貫入45公分,取後二次錘數之和即為標準貫入試驗之N 值。此外,於適當深度加取3吋薄管不擾動土樣,供力學試驗之用。薄管取樣以油壓機緩緩下壓,儘量使土壤不受擾動而保持土樣原狀,儘快運至試驗室進行力學試驗。

2.3 室內試驗

由現場所採取樣品,運至試驗室後進行一般物理性質試驗及力學試驗。相關試驗方法係參照CNS、ASTM等相關土壤試驗規範進行,說明如下:

(一)一般物理性質試驗

- 1.含水量試驗(Water Content Test)
- (1)試驗目的:求取土壤含水量,藉以估算飽和度及乾單位重。
- (2) 參考規範: CNS 5091、ASTM D2216。
- 2.單位重試驗(Unit Weight Test)
- (1)試驗目的:求取土壤現地(統體)單位重及乾單位重。
- (2) 參考規範: CNS 5091、ASTM D2216。
- 3.阿太堡限度試驗(Atterberg Limits Test)
- (1)試驗目的:求取土壤液性限度及塑性限度,以為凝聚性土壤分類指數,亦為粘性土壤性質之重要指標。
- (2)參考規範:CNS 5087、5088、ASTM D4318。
- 4.比重試驗(Specific Gravity Test)
- (1)試驗目的:求取土壤乾土顆粒比重,藉以計算孔隙比及飽和度。
- (2) 參考規範: CNS 5090、ASTM D854。
- 5.顆粒粒徑分布試驗(Grain Size Distribution Test)
- (1)試驗目的:求取土壤顆粒粒徑分布曲線,作為土壤分類、濾層設計、滲透係數推估及液化分析之用。
- (2)參考規範: CNS 11766、ASTM D421、D 422。
- 6.相對密度試驗(Relative Density Test)
- (1)試驗目的:求取天然砂土之最大與最小乾密度,進而求得其相對密度,並研判砂質土壤之液化潛能,另亦常作為砂質回填

土之密度控制之用。

(2) 參考規範: CNS 4254、D 4253。

上述各項物理性質試驗,以表格填寫試驗結果,並繪製粒徑分布曲線。 (二)直接剪力試驗(Direct Shear Test)

- 試驗目的:求取土之直剪強度參數 C、φ,作為長期穩定分析或砂性 土壤之穩定分析。高度過壓密粘土之殘餘剪力強度適用 於已滑動過之滑動面穩定分析。
- 2. 參考規範: CNS 11778、ASTM D3080。
- 3.結果報告:以圖表報告試驗結果,包括一般物理性質、剪應力/剪 位移曲線、剪力強度/正應力關係。

(三)無圍壓縮試驗

試驗目的:求得黏性土壤無圍壓縮強度,提供土壤之凝聚力 C值。

2. 參考規範: CNS 12384、ASTM D2166。

3.結果報告:以圖表報告試驗結果,包括一般物理性質、正向應力/應 變曲線、無圍壓縮強度。

(四)單向度壓密試驗(One-dimensional Consolidation Test)

- 1.試驗目的:求取軟弱地材料之壓縮性質之常數,藉以估算軟弱土層 壓密沉陷量及主壓密完成時間。
- 2. 參考規範: CNS 12239、ASTM D2435。
- 3.結果報告:以圖表報告試驗結果,包括一般物理性質、壓密曲線、 壓密係數及體積壓縮係數等。

(五)三軸壓縮試驗(Triaxial Compression Test)


- 1.試驗目的:根據工程性質及土壤種類之不同,選用 CIU 方式模擬土壤受力狀態,以求取土壤之剪力強度參數,作為承載力或邊坡穩定性分之用。
- 2.參考規範:ASTM D2850。

3.結果報告:受委託單位依據大地工程調查工作計畫書中所選用之試 驗方式,以圖表報告試驗結果,包括一般物理性質、軸 差應力及應變、圍壓、超額孔隙水壓、應力路徑(或破 壞包絡線)等。

2.4 鑽探成果報告內容

經確定基地土壤之類別、物理性質及工程特性後,綜合前後地質資料,依現階段建築規畫情況,提出大地工程分析,工作內容簡述如下:

- 1.區域地質(包括地層、基地鄰近活動斷層)
- 2.基地地質及工程性質(包括地層分布、地下水位概況、 地層力學試驗結果及簡化土層設計參數)
- 3.地震分析(包括台灣地區地震概況、地震力分析、液化 潛能分析)
- 4.大地工程分析(基礎承載力分析、沉陷量分析、基礎型 式建議、土壤垂直水平地盤反力係數、側向土壓力分 析、開挖底面穩定之檢討、基礎施工應注意事項建議)
- 5.結論與建議

三、區域地質

3.1 地層

基地位於彰化市光復路、和平路路口,圖3.1為基地位置圖。根據摘自中央地質調查所臺灣地質圖幅之圖3.2區域地質圖,基地地層屬近代沖積層,主要由未固結之砂、礫石、泥及粘土組成。

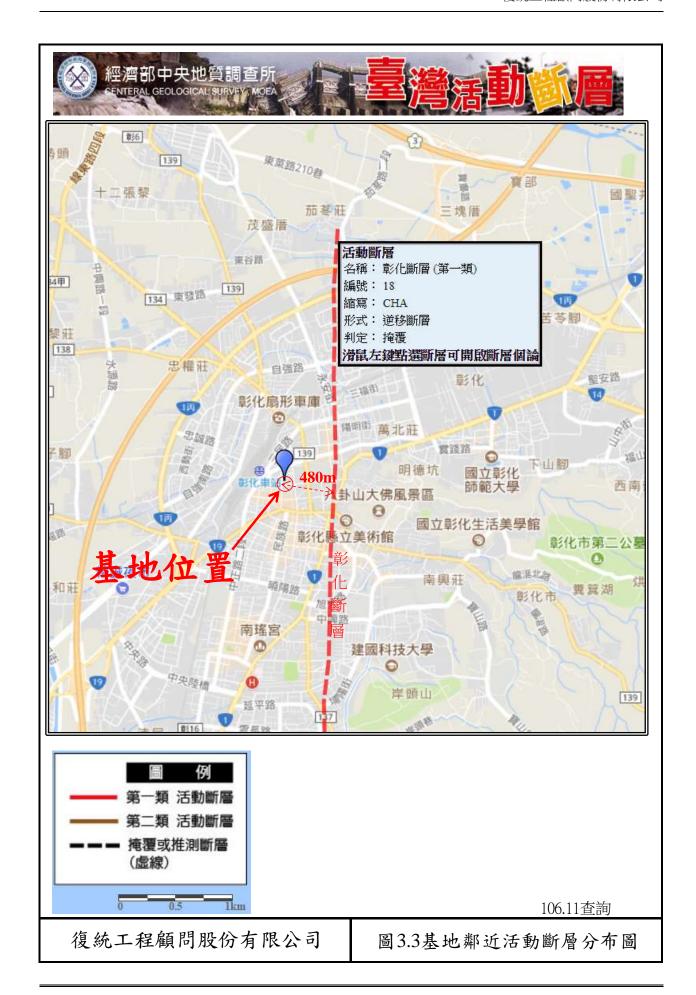
3.2 地質構造

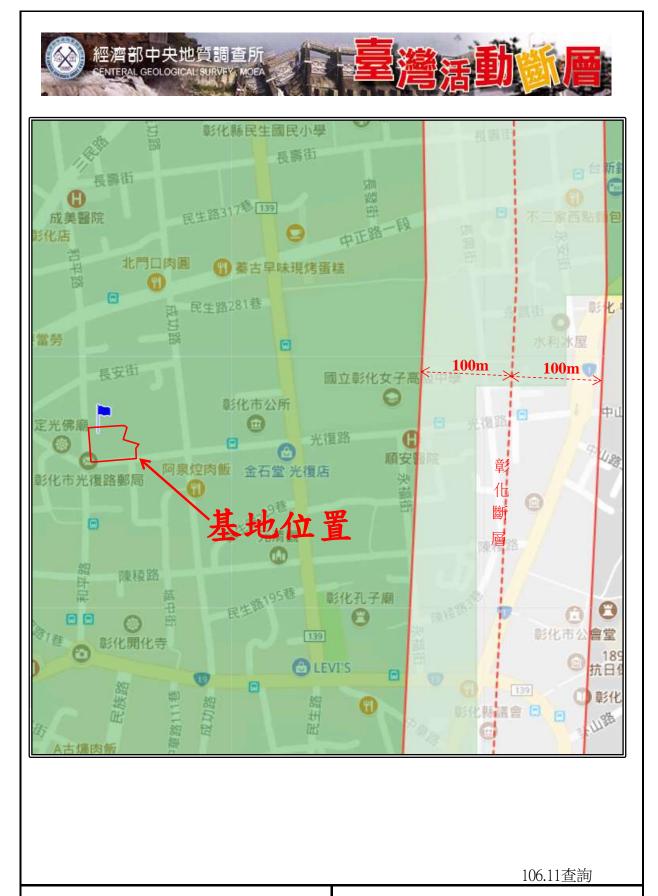
根據摘自中央地質調查所臺灣地質圖幅之圖3.2區域地質圖,基地附近之主要地質構造線,為位於基地東側之彰化斷層;根據圖3.3基地鄰近活動斷層分布圖,彰化斷層位於基地東側距離約480m。以下簡述鄰近主要地質構造一彰化斷層分布情況。

彰化斷層,為逆移斷層,呈北北西轉南北走向,由彰化縣和美鎮向南延伸至田中附近,(林朝祭,1957;中國石油公司,1982;石再添與楊貴三,1985;張徽正等,1998)。 斷層向北可能連接大肚台地西緣的大甲斷層,向南可能連接桐樹湖斷層,長約36公里。彰化斷層在八卦台地北段西緣呈現直線狀崖,這些崖狀特徵是否為斷層崖、斷層線崖或差異侵蝕的結果,目前仍不清楚。彰化斷層在地表並未發現斷層露頭,由地球物理探勘結果可能為向東傾斜的逆移斷層。

由近期的大地測量結果顯示,跨彰化斷層的水平速度場變化量,在1999年集集地震前及地震後均不顯著,且以壓縮 形式為主。水準測量結果顯示,除接近員林地區有明顯的高 程變化之外,其他地區並不顯著。

由於受沖積層掩覆,彰化斷層是否向北連接大甲斷層,或向南連接桐樹湖斷層,仍待進一步調查。彰化斷層北段可能逆衝至地表附近,但被現代沖積層或山麓堆積物所掩覆,暫列第一類活動斷層。


經查詢基地範圍並未位於活動斷層地質敏感區內,亦未位於彰化斷層構造線100公尺內(圖3.4)。



彰化縣彰化市成功段 630 等地號地質鑽探及試驗分析工作成果報告書

彰化縣彰化市成功段 630 等地號地質鑽探及試驗分析工作成果報告書

復統工程顧問股份有限公司

圖3.4彰化斷層斷層帶範圍圖

四、基地地質及工程性質

4.1 基地地層分布

根據現地鑽探結果,鑽探深度內基地地層屬近代沖積層,圖4.1為基地鑽孔間地層剖面圖。茲將基地鑽孔鑽探結果,簡述其組成及工程性質於后:

第一層回填層:

回填層,地表部分為水泥鋪面,其下為回填級配夾粘土、砂土,分布深度約自地表面至地表下0.6~1.0公尺之間。

第二層棕灰色粉土質粘土層:

棕灰色粉土質粘土含細砂,分布深度約自地表下0.6~1.1公尺至地表下4.3~5.5公尺之間。現場標準貫入試驗N值平均約為7,具中等堅實稠度。平均自然含水量約為24.5%,平均土壤總體單位重約為1.90 t/m³。液性限度及塑性指數平均分別為37.4%及15.0%。

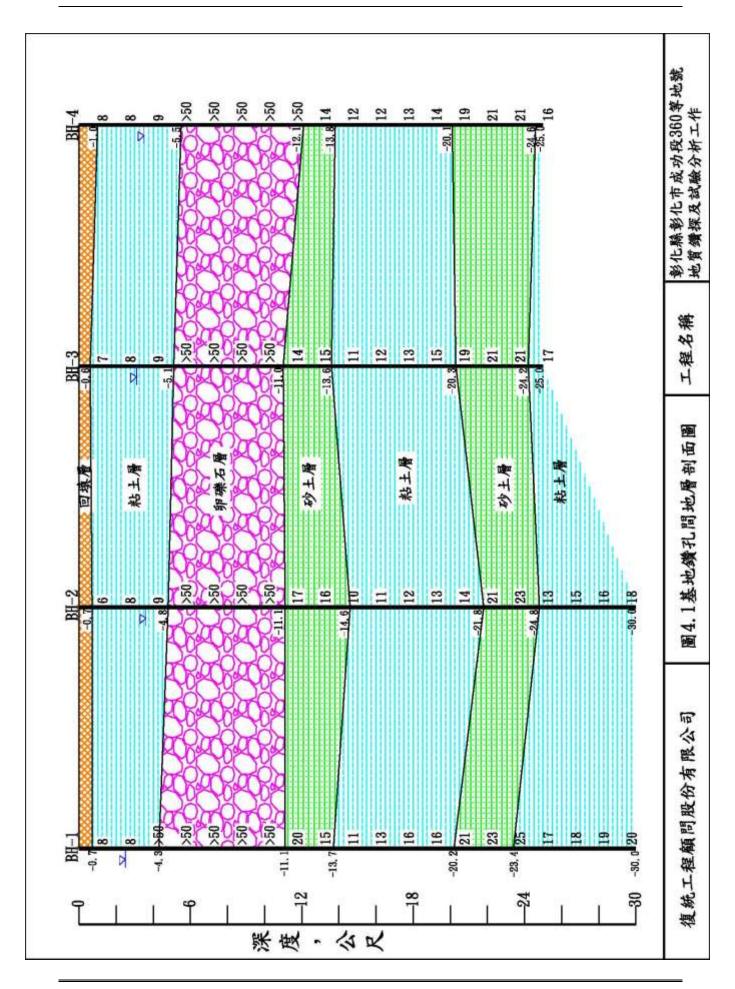
第三層卵礫石層:

卵礫石層,主要為灰色卵礫石夾粗中砂,分布深度約自地表下4.3~5.5公尺至地表下11.0~12.1公尺之間,約於地表下8.7~9.6公尺以下至本層底部,卵石含量少,為礫石夾粗中砂,現場標準貫入試驗N值大於50。

第四層灰色粉土質中細砂層:

灰色粉土質中細砂偶夾礫石土,分布深度約自地表下 11.0~12.1公尺至地表下13.6~14.6公尺之間。現場標準貫入 試驗N值平均約為16,具中等緊密之緊密度。平均自然含水 量約為22.0%,平均土壤總體單位重約為1.94 t/m³。

第五層灰色粉土質粘土層:


灰色粉土質粘土含細砂,分布深度約自地表下13.6~14.6公尺至地表下20.1~21.8公尺之間。現場標準貫入試驗N值平均約為13,具堅實稠度。平均自然含水量約為26.8%,平均土壤總體單位重約為1.90 t/m³。液性限度及塑性指數平均分別為37.9%及15.9%。

第六層灰色粉土質中細砂層:

灰色粉土質中細砂層,分布深度約自地表下20.1~21.8公尺至地表下23.4~24.8公尺之間。現場標準貫入試驗N值平均約為21,具中等緊密之緊密度。平均自然含水量約為18.5%,平均土壤總體單位重約為1.95 t/m³。

第七層灰色粉土質粘土層:

灰色粉土質粘土含細砂,分布深度約自地表下23.4~24.8公尺鑽探深度終止地表下30.0公尺之間皆是。現場標準貫入試驗N值平均約為17,具堅實稠度。平均自然含水量約為36.2%,平均土壤總體單位重約為1.92 t/m³。液性限度及塑性指數平均分別為40.7%及18.8%。

4.2設計用簡化土層表為便利分析之進行,將基地土層簡化成下表所示之土層及參數

分布深度	囮	土 國		1	般	物 理	型	御		カ	蜀叶	번		河
(平均值)	" 灾	令	N值	3	γt	e	TT	PI	C	ф	Ccu/C'cu	φcn/φ'cu	*Su	Cc/Cs
ш		類		%	t/m^3		%	%	t/m^2	麼	t/m^2	椡	t/m^2	
0.6~1.0(0.8)	П	SF												
4.3~5.5(4.9)	П	CL	7	24.5	1.90	0.79	37.4	15.0			9.0/2.0	22.8/28.2	4 4.	0.251/0.047
11.0~12.1(11.3)	Ш	MS	>50		*2.30				0.0	*35.0				
13.6~14.6(13.9)	VI	SM	16	22.0	1.94	0.68			0.0	31.6				
20.1~21.8(20.6)	Λ	CL	13	26.8	1.90	0.82	37.9	15.9			0.2/0.1	15.7/27.3	8.1	0.232/0.027
23.4~24.8(24.3)	IV	SM	21	18.5	1.95	0.62			0.0	*32.7				
30.0(鑽孔底部)	MI	CL	17	36.2	1.92	0.94	40.7	18.8			*1.0/0.5	*24.0/30.0	10.6	*1.0/0.5 *24.0/30.0 10.6 *0.276/0.032

*:建議值 土層分類符號說明:SF(回填層)、GW(卵礫石層)、SM(砂土層)、CL(粘土層)

4.3 地下水概况

本基地現場鑽探期間,於每孔鑽探工作完成後量測鑽孔內之地下水位,並埋設水位觀測井。根據孔內量測結果,鑽孔內地下水約位於地表下2.5~3.6公尺。考慮短期性及季節性水位變化等因素之影響,基地平時之地下水建議以保守地以地表3.0公尺做為設計參考,約位於粘土層及卵礫石層界面處;短期之高水位則建議以位於地表下1.0公尺計算之。

五、地震分析

5.1、地震概况及地震力分析

蔡義本等(1977)確認台灣有主要三個地震帶:東北地震帶、東部地震帶及西部地震帶。台灣東北及其東邊外海有強烈的地震活動。這個地震帶(即東北地震帶)是由一個厚約50公里向西北傾斜的班式帶(Benioff Zone)所形成,此帶的南邊屬於淺震,向北逐漸加深。東部地震帶自宜蘭東北方海底向西南西延伸至恆春半島東方,其寬約130公里。東部地震帶及東北地震帶的重疊地帶是地震最活躍的地區。西部地震帶起自台北附近,向南南西延伸,止於台南附近,其寬約80公里。台灣島西北部、西南部以及澎湖群島,歷年來沒有大地震發生,是屬於比較安靜的地方。

依基地地層N值計算,基地地盤屬第二類地盤,詳表5.1。基地位於彰化縣彰化市,經查表震區短週期設計水平譜加速度係數 $S_S^D=0.7$;震區短週期最大考量水平譜加速度係數 $S_S^M=0.9$,短週期之工址放大係數Fa為1.0。經計算工址短週期設計水平譜加速度係數 $S_{DS}=0.70$ 、工址短週期最大考量設計水平譜加速度係數 $S_{MS}=0.90$ 。基地距離車籠埔斷層約17.6公里,近斷層調整因子 N_A 與 N_V ,如表5.2所示。

$$S_{DS} = S_S^D * Fa*N_A = 0.7*1.0*1.0=0.70$$

$$S_{MS} = S_S^M * Fa*N_A , = 0.9*1.0*1.0=0.90$$

表5.1基地地盤種類計算表

深度 m	層次	土層分類	N 值	分層厚度 di m	剪力波速 Vsi m/sec	di/Vsi	平均剪力波速 V _{s30} m/sec	地盤種類
0.8	I	SF						
4.9	П	CL	7	5.8	191	0.030		
11.3	Ш	GW	50	12.8	295	0.043		第二
13.9	IV	SM	16	12.8	202	0.063	233.4	類
20.6	V	CL	13	12.8	235	0.054		地 盤
24.3	VI	SM	21	12.8	221	0.058		
30.0	VII	CL	17	10.0	257	0.039		

表5.2近斷層調整因子

(a) 設計地震之調整因子

N_A	$r \leq 2 \text{ km}$	$2 \text{km} < r \leq 5 \text{ km}$	$5 \text{km} < r \leq 8 \text{ km}$	$8\mathrm{km}\!<\!r\!\leq\!12\;\mathrm{km}$	r>12 km
IV_A	1.23	1.16	1.07	1.03	1.00
N_{ν}	$r \leq 2 \text{ km}$	$2 \text{km} < r \le 5 \text{ km}$	$5 \text{km} < r \leq 8 \text{ km}$	$8 \text{km} < r \le 12 \text{ km}$	r> 12 km
111	1.36	1.32	1.22	1.10	1.00

(b) 最大考量地震之調整因子

N_A	$r \leq 2 \text{ km}$	$2 \text{km} < r \le 5 \text{ km}$	$5 \text{km} < r \leq 8 \text{ km}$	$8 \text{km} < r \le 12 \text{ km}$	r>12 km
IV_A	1.25	1.20	1.10	1.03	1.00
N_{ν}	$r \leq 2 \text{ km}$	$2 \text{km} < r \le 5 \text{ km}$	$5 \text{km} < r \leq 8 \text{ km}$	$8 \text{km} < r \le 12 \text{ km}$	r>12 km
111	1.50	1.45	1.30	1.15	1.00

圖 5.1 基地與車籠埔斷層距離關係圖

5.2、液化潛能分析

根據"建築物基礎構造設計規範"第十章土壤液化評估及" 建築物耐震設計規範及解說"(100年7月版)規定,符合以下 所有三項條件的沖積層之飽和砂土層,在地震時可能液化現 象,下述方法進行土壤液化之判定。

- 1.地表面下20m以內之飽和砂土層,且地下水位在地表面 10m以內時。
- 2.細粒土壤含有率FC在35%以下之土層,或FC超過35%,惟塑性指數Ip在15以下之土層。
- 3.通過率為50%之粒徑 D_{50} 在10mm以下,且10%粒徑 D_{10} 在 1mm以下之土層。

液化之評估由液化抵抗率 F_L 值決定之。 F_L 值小於1.0時,即判定該土層可能液化。

$$\begin{split} F_L = & R/L \\ L = & \gamma_d A \frac{\sigma_0}{\sigma'_0} \\ \gamma_d = & 1.0 \text{-} 0.015 x \\ \sigma_0 = & \{ \gamma_{t1} h_w + \gamma_{t2} (x \text{-} h_w) \} / 10 \\ \sigma'_0 = & \{ \gamma_{t1} h_w + \gamma'_{t2} (x \text{-} h_w) \} / 10 \end{split}$$

其中

FC:細粒土壤含有率(%),為粒徑 75μm 以下土粒之通過質量百分率。

I_P:塑性指數。

D 50:有 50%重量之土粒比此細之粒徑(mm)

D₁₀:有10%重量之土粒比此細之粒徑(mm)

FL:液化抵抗率。

R:土壤發生液化時之反覆三軸剪力強度比。

L:土壤因地震引起的剪應力比。

γ_d:地震時尖峰剪應力比沿深度方向之折減係數。

A:水平地震地表加速度係數。

 σ_0 :總覆土壓力(kgf/cm²)。

 σ'_0 :有效覆土壓力(kgf/cm²)。

X:受評估土層距離地表面之深度(m)

 γ_{t1} : 地下水位面上方之土壤單位體積重 (tf/m^3) 。

γ₁₂: 地下水位面下方之土壤單位體積重(tf/m³)。

γ't2: 地下水位面下方之土壤有效單位體積重(tf/m³)。

hw:地下水位之深度(m)

反覆三軸剪力強度比R,依下式計算

$$R = \begin{bmatrix} 0.0882 & \sqrt{N_a/1.7} & (N_a<14) \\ & & \\ 0.0882 & \sqrt{N_a/1.7 + 1.6*10^{-6}*(N_a-14)^{4.5}} & (14 \le N_a) \end{bmatrix}$$

其中,

砂質土

 $N_a = C_1 N_1 + C_2$

 $N_1 = 1.7*N/(\sigma'_0 + 0.7)$

$$C_1 = \begin{bmatrix} 1 & (0\% \le FC < 10\%) \\ (FC+40)/50 & (10\% \le FC < 60\%) \\ FC/20-1 & (60\% \le FC) \end{bmatrix}$$

$$C_2 = \begin{bmatrix} 0 & (0\% \le FC \le 10\%) \\ (FC-10)/18 & (10\% \le FC) \end{bmatrix}$$

礫質土

 $N_a = \{1-0.36\log_{10}(D_{50}/2)\} N_1$

其中

R: 反覆三軸剪力強度比。

N:由標準貫入試驗所得之N值。

 N_1 :以有效覆土壓力 1kgf/cm^2 等值換算求得之N值。

Na:考慮土壤粒度影響之修正N值。

C1,C2:與細粒土壤含有率相關之N值修正係數。

依上述方法判定為可能液化之砂質土層,應依液化抵抗率 F_L 值折減其耐震設計用土壤參數。此土壤參數值係以不考慮土壤液化所求得之土壤參數乘以表5.3所列之折減係數 D_E 。 D_E =0之土層即為耐震設計土壤參數為零之土層。土壤參數在耐震設計為零或折減之土層,其全部重量仍應視為其下方土層之載重。

工址應評估大地震發生時,砂土層發生液化的可能性。 此時容許發生土壤液化,但建築物應採用之適當基礎形式(如 樁基礎),並檢核液化後之安全性。 進行耐震設計時,亦應考慮土層不會產生不穩定之情況,並採用較為嚴格的結果作為耐震設計之依據,如計算基本振動周期時,土壤參數毋需折減。

根據"5.1節地震概況及地震力分析",基地工址短週期設計水平譜加速度係數 S_{DS} =0.70、工址短週期最大考量設計水平譜加速度係數 S_{MS} =0.90。

經查詢基地係位於低土壤液化潛勢範圍(圖5.2),基地地表下 20.0 公尺以上之砂土層,應檢核地表水平加速度 $(A=0.4S_{DS}g/4.2=0.4*0.70/4.2=0.067g$ 時),設計地震時(地表水平加速度 $A=0.4S_{DS}g=0.4*0.70=0.280g$ 時),及最大考量地震時(地表水平加速度 $A=0.4S_{MS}g=0.4*0.90=0.360g$ 時)發生液化之可能性。評估深度係以基地較深鑽探孔位,地表下 20 公尺以上之砂土層。土壤液化安全係數及液化後安全評估詳表 5.4~表 5.7,液化後之損害程度,中小地震 $A=0.4S_{DS}g/4.2=0.084g$ 時,屬"無液化"; 設計地震時(地表水平加速度 $A=0.4S_{DS}g-0.352g$),及最大考量地震時(地表水平加速度 $A=0.4S_{MS}g=0.352g$),及最大考量地震時(地表水平加速度 $A=0.4S_{MS}g=0.420g$ 時),單點評估深度為"輕度液化",累積地表下 20.0 公尺以上之 20.0 公尺以上之 20.0 公尺以上之 20.0 公尺以此之 20.0 以"輕度液化"為主。

依上述方法分析,若分析結果為高液化潛能之基地,應 視基地之地層特性、結構物型式及重要性,進行地層改良、 變更基礎型式,或將土壤參數折減,進行耐震設計,此處所 謂土壤參數係指地盤反力係數。於低液化破壞情況之區域, 可視結構物重要性、是否產生大規模變形(噴砂、陷落等地表 破壞現象),決定解決方法。

基礎結構耐震設計時,地盤反力係數建議依表5.3所示折

減之。基地承載砂土層深度大於10m,平均反覆三軸剪力強度比 R=0.2<0.3,平均液化抵抗率 F_L 約介於1/3及2/3之間,依表5.3所示 折減係數 D_E =2/3。

表 5.3 土壤參數折減係數 DE

F _L 之範圍	距目前地盤面之深度 χ(m)	反覆三軸剪	「力強度比R
		$R \leq 0.3$	0.3 < R
$F_L \leq 1/3$	$0 \le \chi \le 10$	0	1/6
Z —	$10 < \chi \le 20$	1/3	1/3
$1/3 \le F_L \le 2/3$	$0 \le \chi \le 10$	1/3	2/3
	$10 < \chi \le 20$	2/3	2/3
$2/3 \leq F_L \leq 1$	$0 \le \chi \le 10$	2/3	1
E —	$10 < \chi \le 20$	1	1

表5.4土層液化評估潛能表(1)

 $A=0.4S_{DS}/4.2=0.067g$

 $A=0.4S_{DS}=0.28g$ $A=0.4S_{MS}=0.36g$

WL:-1.0m

	DS	- 0.007	8 •	. 18 _{DS} 0.20	0		MS 0.5	- 6		WL:-1.0m	l.	
NO.	土壤分類	N _(SPT)	Depth(m)	FC(<#200)	N _a	R	L1	F_{L1}	L2	F_{L2}	L3	F_{L3}
BH-1			1.5		非	屬	液	化	潛	勢	土	壤
	CL	8	3.0	89	非	屬	液	化	潛	勢	土	壤
	卵		4.5		非	屬	液	化	潛	勢	土	壤
			6.0		非	屬	液	化	潛	勢	土	壤
	礫		7.5		非	屬	液	化	潛	勢	土	壤
			9.0		非	屬	液	化	潛	勢	土	壤
	石		10.5		非	屬	液	化	潛	勢	土	壤
	SM	20	12.0	34	29.60	0.74	0.12	6.19	0.48	1.55	0.62	1.20
	SM	15	13.5	36	21.68	0.33	0.11	3.00	0.47	0.70	0.61	0.54
	CL	11	15.0	95	非	屬	液	化	潛	勢	土	壤
	CL	13	16.5	80	非	屬	液	化	潛	勢	土	壤
	CL	16	18.0	91	非	屬	液	化	潛	勢	土	壤
	CL	16	19.5	93	非	屬	液	化	潛	勢	土	壤
BH-2	CL	6	1.5	88	非	屬	液	化	潛	勢	土	壤
	CL	8	3.0	92	非	屬	液	化	潛	勢	土	壤
	CL	9	4.5	91	非	屬	液	化	潛	勢	土	壤
	卵		6.0		非	屬	液	化	潛	勢	土	壤
	礫		7.5		非	屬	液	化	潛	勢	土	壤
			9.0		非	屬	液	化	潛	勢	土	壤
	石		10.5		非	屬	液	化	潛	勢	土	壤
	SM	17	12.0	36	26.12	0.47	0.12	3.88	0.48	0.97	0.62	0.75
	SM	16	13.5	35	22.69	0.35	0.11	3.17	0.47	0.74	0.61	0.57
	CL	10	15.0	95	非	屬	液	化	潛	勢	土	壤
	CL	11	16.5	90	非	屬	液	化	潛	勢	土	壤
	CL	12	18.0	92	非	屬	液	化	潛	勢	土	壤
	CL	13	19.5	92	非	屬	液	化	潛	勢	土	壤

表5.5土層液化評估潛能表(2)

 $A=0.4S_{DS}/4.2=0.067g$

 $A=0.4S_{DS}=0.28g$ $A=0.4S_{MS}=0.36g$

WL:-1.0m

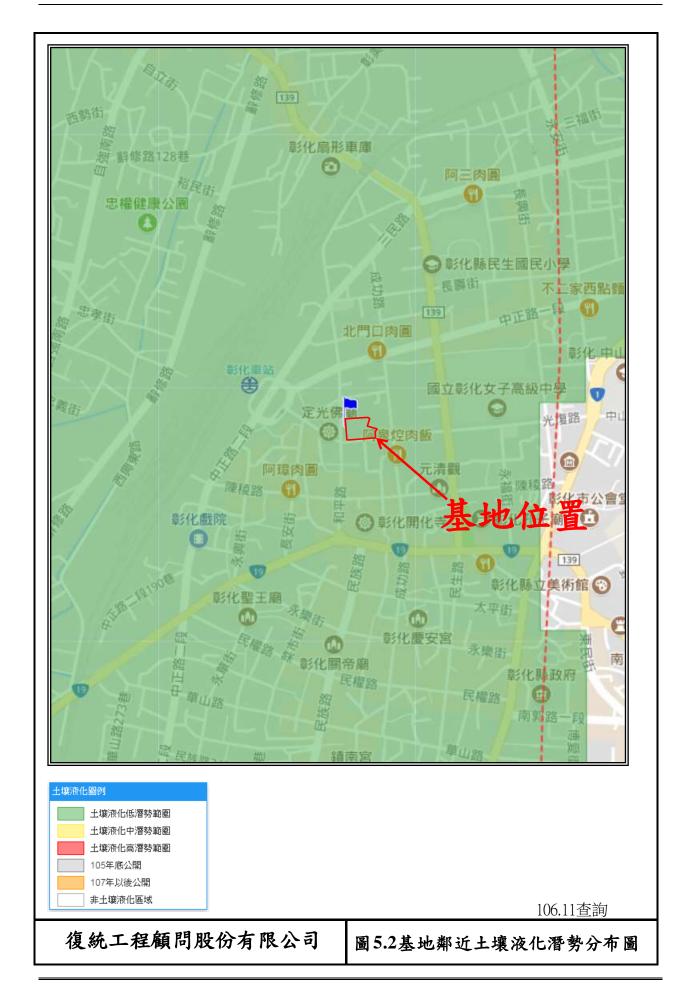
	DS			DS			WIS			WL:-1.UIII		
NO.	土壤分類	$N_{(S\!PT)}$	Depth(m)	FC(<#200)	N_a	R	L1	F_{L1}	L2	F_{L2}	L3	F_{L3}
ВН-3	CL	7	1.5	90	非	屬	液	化	潛	勢	土	壤
	CL	8	3.0	90	非	屬	液	化	潛	勢	土	壤
	CL	9	4.5	89	非	屬	液	化	潛	勢	土	壤
	呵		6.0		非	屬	液	化	潛	勢	土	壤
	礫		7.5		非	屬	液	化	潛	勢	土	壤
			9.0		非	屬	液	化	潛	勢	土	壤
	石		10.5		非	屬	液	化	潛	勢	土	壤
	SM	14	12.0	16	15.31	0.26	0.12	2.21	0.48	0.55	0.62	0.43
	SP-SM	15	13.5	11	13.64	0.25	0.11	2.27	0.47	0.53	0.61	0.41
	CL	11	15.0	81	非	屬	液	化	潛	勢	土	壤
	CL	12	16.5	91	非	屬	液	化	潛	勢	土	壤
	CL	13	18.0	93	非	屬	液	化	潛	勢	土	壤
	CL	15	19.5	85	非	屬	液	化	潛	勢	土	壤
BH-4	CL	8	1.5	93	非	屬	液	化	潛	勢	土	壤
	CL	8	3.0	89	非	屬	液	化	潛	勢	土	壤
	CL	9	4.5	91	非	屬	液	化	潛	勢	土	壤
	卵		6.0		非	屬	液	化	潛	勢	土	壤
			7.5		非	屬	液	化	潛	勢	土	壤
	礫		9.0		非	屬	液	化	潛	勢	土	壤
			10.5		非	屬	液	化	潛	勢	土	壤
	石		12.0		非	屬	液	化	潛	勢	土	壤
	SM	14	13.5	23	16.38	0.27	0.11	2.49	0.47	0.58	0.61	0.45
	CL	12	15.0	79	非	屬	液	化	潛	勢	土	壤
	CL	12	16.5	87	非	屬	液	化	潛	勢	土	壤
	CL	13	18.0	93	非	屬	液	化	潛	勢	土	壤
	CL	14	19.5	82	非	屬	液	化	潛	勢	土	壤

表5.6土層液化損害評估(1)

中小地震

設計地震 最大考量地震

				1 1 10/12			以 III O IK			C 了 王·O·欣
NO.	Depth(m)	F_{L1}	P_{L}	液化程度	F_{L2}	P_{L}	液化程度	F_{L3}	P_{L}	液化程度
BH-1	1.5		非	屬	液	化	潛	勢	土	壤
	3.0		非	屬	液	化	潛	勢	土	壤
	4.5		非	屬	液	化	潛	勢	土	壤
	6.0		非	屬	液	化	潛	勢	土	壤
	7.5		非	屬	液	化	潛	勢	土	壤
	9.0		非	屬	液	化	潛	勢	土	壤
	10.5		非	屬	液	化	潛	勢	土	壤
	12.0		非	屬	液	化	潛	勢	土	壤
	13.5	3.00	0.00	無	0.70	1.46	輕度液化	0.54	2.24	輕度液化
	15.0		非	屬	液	化	潛	勢	土	壤
	16.5		非	屬	液	化	潛	勢	土	壤
	18.0		非	屬	液	化	潛	勢	土	壤
	19.5		非	屬	液	化	潛	勢	土	壤
		Σ	0.00	無	Σ	1.46	輕度液化	Σ	2.24	輕度液化
BH-2	1.5		非	屬	液	化	潛	勢	土	壤
	3.0		非	屬	液	化	潛	勢	土	壤
	4.5		非	屬	液	化	潛	勢	土	壤
	6.0		非	屬	液	化	潛	勢	土	壤
	7.5		非	屬	液	化	潛	勢	土	壤
	9.0		非	屬	液	化	潛	勢	土	壤
	10.5		非	屬	液	化	潛	勢	土	壤
	12.0	3.88	0.00	無	0.97	0.18	輕度液化	0.75	1.50	輕度液化
	13.5	3.17	0.00	無	0.74	1.27	輕度液化	0.57	2.10	輕度液化
	15.0		非	屬	液	化	潛	勢	土	壤
	16.5		非	屬	液	化	潛	勢	土	壤
	18.0		非	屬	液	化	潛	勢	土	壤
	19.5		非	屬	液	化	潛	勢	土	壤
<u> </u>		Σ	0.00	無	Σ	1.45	輕度液化	Σ	3.60	輕度液化


表5.7土層液化損害評估(2)

中小地震

設計地震

最大考量地震

				1 1 20 12			以可り			C了至乙次
NO.	Depth(m)	F_{L1}	P_{L}	液化程度	F_{L2}	$P_{\rm L}$	液化程度	F_{L3}	P_{L}	液化程度
BH-3	1.5		非	屬	液	化	潛	勢	土	壤
	3.0		非	屬	液	化	潛	勢	土	壤
	4.5		非	屬	液	化	潛	勢	土	壤
	6.0		非	屬	液	化	潛	勢	土	壤
	7.5		非	屬	液	化	潛	勢	土	壤
	9.0		非	屬	液	化	潛	勢	土	壤
	10.5		非	屬	液	化	潛	勢	土	壤
	12.0	2.21	0.00	無	0.55	2.70	輕度液化	0.43	3.42	輕度液化
	13.5	2.27	0.00	無	0.53	2.29	輕度液化	0.41	2.88	輕度液化
	15.0		非	屬	液	化	潛	勢	土	壤
	16.5		非	屬	液	化	潛	勢	土	壤
	18.0		非	屬	液	化	潛	勢	土	壤
	19.5		非	屬	液	化	潛	勢	土	壤
		Σ	0.00	無	Σ	4.99	輕度液化	Σ	6.30	中度液化
BH-4	1.5		非	屬	液	化	潛	勢	土	壤
	3.0		非	屬	液	化	潛	勢	土	壤
	4.5		非	屬	液	化	潛	勢	土	壤
	6.0		非	屬	液	化	潛	勢	土	壤
	7.5		非	屬	液	化	潛	勢	土	壤
	9.0		非	屬	液	化	潛	勢	土	壤
	10.5		非	屬	液	化	潛	勢	土	壤
	12.0		非	屬	液	化	潛	勢	土	壤
	13.5	2.49	0.00	無	0.58	2.05	輕度液化	0.45	2.68	輕度液化
	15.0		非	屬	液	化	潛	勢	土	壤
	16.5		非	屬	液	化	潛	勢	土	壤
	18.0		非	屬	液	化	潛	勢	土	壤
	19.5		非	屬	液	化	潛	勢	土	壤
		Σ	0.00	無	Σ	2.05	輕度液化	Σ	2.68	輕度液化

彰化縣彰化市成功段 630 等地號地質鑽探及試驗分析工作成果報告書

5.3 土壤地盤反力係數

基礎版之垂直地盤反力係數Kv,與地層性質、基礎尺寸 及基礎深度等因素有關。除了直接於承載層位置,施做現場 平鈑載重試驗,根據施加之載重及平鈑沉陷量,即可求得垂 直反力係數Kv。另外尚可利用半經驗公式或經驗公式推估。 半經驗公式以Vesic(1961)或Bowles(1988)所提出者為代表, 此處建議以Bowles所提之簡化公式計算之:

Kv = 40FQa

式中

Kv:垂直地盤反力係數,t/m²/m

F:安全係數,3

Qa:容許承載力,t/m²

經驗值以謝旭昇、程日晟(1996)所提之建議值,如表 5.8 所示,表中 Kv 值基本上與 SPT-N 值 約略 有一正比例之關係 $(Kv=150\sim300N)$,基地建議採用 $Kv=150*16=2400~t/m^3$ 。

計算水平地盤反力係數Kh之經驗公式甚多,而利用標準 貫入試驗N值來推算最為簡便、通用。除了常見赤井、高橋 公式及福岡、宇都公式外,尚有其它較為常用之公式如下:

(1)赤井、高橋公式

0.37

 $Kh = 0.502 N_{SPT}$

(2)福岡、宇都公式

0.406

$$Kh = 0.691 N_{SPT}$$

(3)日本土質工學會公式

$$Kh=5.3NDp^{-3/4}y^{-1/2}$$

(4)日本道路協會(1969)公式

(5) 矢作公式(1977)

$$Kh = (1.089NDp^{-3/4} + C_1 + C_2)y^{-1/2}$$

(6)吉中公式

$$Kh = 7/1.2NDp^{-3/4}$$

式中

Kh=設計用土壤水平地盤反力係數,kg/cm³

Y=設計時樁頭允許之水平變化量, cm

N=標準貫入試驗值

Dp=基樁直徑, cm

C₁=係數,依基樁種類而定

C₂=係數,依土層種類而定

另外,趙基盛、陳福勝統計台北盆地現地進行之孔內水 平載重試驗結果如下: (1)黏土層: Km=1.13N^{0.93}

(2)粉土層: Km=0.90N^{0.83}

(3)砂土層: Km=1.05N^{0.76}

此外,本土性之經驗公式如下:

(1)謝旭昇(1996)

$$Kh=100\sim150N(砂 ± , t/m^3)$$

$$Kh=200\sim300Su(粘土, t/m^3)$$

(2)林至誠、郭銘傳(1995)

$$Kh=65N(砂 ± , t/m^3)$$

$$Kh=100Su(粘土, t/m^3)$$

(3)冀樹勇、陳錦清及王建智(1999)

$$Kh=100N($$
砂土, t/m^3)

上述經驗公式立論各異,所得結果差異頗大,表 5.9為基地地層,依上述經驗公式計算所得,其中以涉及樁徑、樁頭變位及基樁性質者,暫以等直徑 Dp=60cm、樁頭水平變位 y=1cm、平時狀況之場鑄樁計算之。

根據"5.2、液化潛能分析"結果,基地砂土層於 $A=0.4S_{DS}g$ 及 $A=0.4S_{MS}g$ 時,皆可能產生輕度液化之現象。根據"建築物耐震設計規範及解說"規定,地盤反力係數需依表5.8土壤參數折減

係數 D_E 進行折減。基地砂土層水平地盤反力係數則建議採福岡宇都公式經折減後之數值,如表5.10所示;垂直地盤反力係數折減為 $Kv=1600\ t/m^3$ 。

表 5.8 SPT-N值與Kv關係表

土壤種類	SPT-N值	$Kv(t/m^3)$
粘性土壤		
極軟	0-2	< 500
軟弱	2-4	500-1000
中等堅實	4-8	1000-2000
堅實	8-15	2000-4000
極堅實	15-30	4000-8000
堅硬	>30	>8000
砂質土壤		
極疏鬆	0-4	<800
疏鬆	4-10	800-2000
中等緊密	10-30	2000-6000
緊密	30-50	6000-8000
極緊密	>50	>8000
承載層	>50	8000-10000

表5.9基地土層Kh計算表

平均	土層	N	Su	赤井高橋	福岡宇都	日本土質 工學會	日本道路 協會	矢作公式
深度	分類		(t/m^2)	(t/m^3)	(t/m^3)	(t/m^3)	(t/m^3)	(t/m^3)
0.8	SF							
4.9	CL	7	4.4	1031	1523	1721	3885	1720
11.3	GW	50		2135	3383	12292	27748	3892
13.9	SM	16		1400	2130	3934	8879	2174
20.6	CL	13	8.1	1297	1958	3196	7215	2023
24.3	SM	21		1549	2378	5163	11654	2427
30.0	CL	17	10.6	1432	2183	4179	9434	2225

平均	土層	N	Su	吉中公式	趙基盛等	謝旭昇	林至誠等	冀樹勇等
深度	分類		(t/m^2)	(t/m ³)	(t/m^3)	(t/m^3)	(t/m ³)	(t/m^3)
0.8	SF							
4.9	CL	7	4.4	1894	2480	880~1320	440	880
11.3	GW	50		13529	7337	5000~7500	3250	5000
13.9	SM	16		4329	3103	1600~2400	1040	1600
20.6	CL	13	8.1	3518	4411	1620~2430	810	1620
24.3	SM	21		5682	3815	2100~3150	1365	2100
30.0	CL	17	10.6	4600	5661	2120~3180	1060	2120

假設:

椿徑Dp= 60 cm C_1 = 1.149 椿頭變位y= 1 cm C_{2} = 0.217

表5.10基地土層Kh建議值

平均	土層	N	Su	福岡宇都	*福岡宇都
深度	分類		(t/m^2)	(t/m^3)	(t/m ³)
0.8	SF				
4.9	CL	7	4.4	1523	1500
11.3	GW	50		3383	3300
13.9	SM	16		2130	1420
20.6	CL	13	8.1	1958	1900
24.3	SM	21		2378	2300
30.0	CL	17	10.6	2183	2100

*:土壤液化折減建議值

六、大地工程分析

6.1 基礎型式建議

- 一般在選擇基礎之型式時需考慮之因素至少應包括以下各點:
 - (1)基礎土壤之安全承載力。
 - (2)基礎總沉陷量及差異沉陷量。
 - (3)基礎受地下水壓作用所產生上舉力之影響。
 - (4)基礎工程施工之技術能力、經濟性與所需工期等因素。

基地預計新建之地上六層、地下三層之建築物,預計開挖深度約為11.4公尺,根據本工程基地土壤之特性及考慮上列因素,建築物之基礎可採用筏式基礎。此基礎之設計原理,乃利用挖除之土重及地下水浮力來抵銷部份或全部的結構物重量,使結構物實際傳至土層之淨載重減小,而增加土壤承載力的安全性及減少基礎的沉陷量。

6.2 基礎承載力分析

基礎容許承載力依建築技術規則建議之基礎極限承載力公式計算:

 $Qult = CN_cF_{cs}F_{cd}F_{ci} + \gamma_2D_fN_qF_{qs}F_{qd}F_{qi} + 0.5\gamma_1BN_rF_{rs}F_{rd}F_{ri}$

 $Qnet=Qult-\gamma D_f$

Qallow=Qnet/F.S+ γ D_f

式中Qult=極限承載力(tf/m²)

Qnet=淨極限承載力,tf/m²

Qallow=容許承載力,tf/m²

C=基礎版底面以下之土壤凝聚力(tf/m²)

 γ_1 =基礎版底以下B深度範圍內之土壤平均單位重,在地下水位以下者,應為其有效單位重 (tf/m^3)

γ₂=基礎版底以上之土壤平均單位重,在地下水位以下 者,應為其有效單位重(tf/m³)

γ=基礎版底以上之土壤總體單位重(tf/m³)

Df=基礎附近之最低地面至基礎版底面之深度,如鄰近有開挖,須考慮其可能之影響(m)

B=矩形基腳之短邊長度,如屬圓形基腳則指其直徑(m)

L=矩形基腳之長邊長度(m)

β=載重方向與鉛直線之夾角(°)

 N_c, N_q, N_r =支承力因素,與土壤摩擦角 (ϕ) 之關係如表6.1。

F_{cs},F_{qs},F_{rs}=形狀影響因素

F_{cd},F_{qd},F_{rd}=埋置深度影響因素

Fci,Fqi,Fri=載重傾斜影響因素

上述各形狀、埋置深度及載重傾斜影響因素如表6.2所示。

基地預計興建地上六層、地下三層之建築物,預計開挖深度約為11.4公尺,基礎承載力計算時係以第四層之砂土層為承載層,表6.3為不同基礎尺寸與承載力關係表。由表中可見最小基礎容許承載力約介於106.6 t/m²~126.8 t/m²之間。

依100年7月版之"建築物耐震設計規範及解說",並無土壤液化後土壤承載力計算方法,參考"考慮土壤液化之筏式基礎設計"一文(地工技術第103期94年3月,謝旭昇等),文中建議以折減係數 D_E 折減土壤之摩擦抗剪角 ϕ ',計算土壤液化時之基礎容許承載力,因考慮短期載重時,安全係數得以2.0計算之。 D_E 計算時係考慮地表30公尺以上之沉積地層。砂土層於地表下 $0\sim10$ m間之 $D_E=1/3$;地表下 $10\sim20$ m間之 $D_E=2/3$;地表下20m以下土層、卵礫石層及粘土層 $D_E=1$ 計算,平均之 D_E

折減後土壤液化時φ'=31.6°*0.97=30.7°

根據折減後之摩擦抗剪角 φ ',重新計算基礎容許承載力如表 6.4 所示。由表中可見最小基礎容許承載力約介於 126.2 $t/m^2 \sim 150.6$ t/m^2 之間,大於概估平均建築結構荷重 (6+3)*1.4+2.0=14.6 t/m^2 。

因基礎版下砂土層僅餘約2.0公尺,另以第五層粘土層為承載層,重新計算基礎容許承載力如表6.5所示。由表中可見最小基礎容許承載力約介於35.8 t/m²~38.0 t/m²之間,亦大於概估平均建築結構荷重(6+3)*1.4+2.0=14.6 t/m²。

表 6.1 支承力因素

	, , ,	几人不为日	41	
ϕ (度)	N _c	N_q	$N_{\rm r}$	N_r^*
0	5.3	1.0	0.0	0.0
1	5.3	1.1	0.0	0.0
2	5.3	1.2	0.0	0.0
3	5.3	1.2	0.0	0.0
4	5.3	1.3	0.0	0.0
5	5.3	1.4	0.0	0.0
6	5.3	1.5	0.0	0.0
7	5.3	1.6	0.0	0.0
8	5.3	1.7	0.0	0.0
9	5.3	1.8	0.0	0.0
10	5.3	1.9	0.0	0.0
11	5.5	2.1	0.0	0.0
12	5.8	2.2	0.0	0.0
13	6.0	2.4	0.0	0.0
14	6.2	2.5	1.1	0.9
15	6.5	2.7	1.2	1.1
16	6.7	2.9	1.3	1.4
17	7.0	3.1	1.5	1.7
18	7.3	3.4	1.6	2.0
19	7.6	3.6	1.8	2.4
20	7.9	3.9	2.0	2.9
21	8.2	4.2	2.2	3.4
22	8.6	4.5	2.4	4.1
23	9.0	4.8	2.7	4.8
24	9.4	5.2	3.0	5.7
25	9.9	5.6	3.3	6.8
26	10.4	6.0	3.6	8.0
27	10.9	6.5	4.0	9.6
28	11.4	7.1	4.4	11.2
29	13.2	8.3	5.4	13.5
30	15.3	9.8	6.6	15.7
31	17.9	11.7	8.4	18.9
32	20.9	14.1	10.6	22.0
33	24.7	17.0	13.7	25.6
34	29.3	20.8	17.8	31.1
35	35.1	25.5	23.2	37.8
36	42.2	31.6	30.5	44.4
37	51.2	39.6	41.4	54.2
38	62.5	49.8	57.6	64.0
39	77.0	63.4	80.0	78.8
40 以上 · N * 為 他 心 裁 目	95.7	81.2	114.0	93.6

註: N_r*為偏心載重基礎使用

表 6.2 各項影響因素之計算式(Modified from Meyerhof,1964)

戦	提供支承力項目	練聚力(こ)	超 数(q)	(人)棄 干
考處影響項目				
(二) 本 (四) 黎 (安) 中 (日)	彩O=ゆ	F _{cs} =1+0.2(B/L)≤1.2	$F_{qs} = 1.0$	F_{rs} =1.0
心	(φ≥10°) F _{CS} =1	+0.2(B/L)tan²(45°+ ¢ /2)	$F_{qs}=1+0.1(B/L)\tan^2(45^{\circ}+\phi/2)$	$F_{rs}=1+0.1(B/L)\tan^2(45^{\circ}+\phi/2)$
77 4 日報 8 4 4 8 8 8 8	彩0=ø	$F_{cd} = 1 + 0.2(D_f/B) \le 1.5$	F _{qd} =1.0	F _{rd} =1.0
埋動水质粉等四条(U)	(\$≥10°)	$(\phi \ge 10^{\circ})$ F _{cd} =1+0.2(D _f /B)tan(45°+ ϕ /2)	$F_{qd}=1+0.1(D_{p}/B)\tan(45^{\circ}+\phi/2)$	$F_{rd}=1+0.1(D_{t}/B) tan(45^{\circ}+\phi/2)$
()) 中田縣 (20 平) 计标	(φ ≅ β')	-/4 0/00%2		F _{ri} =0
美罗顶外罗勒囚系(1)	$(\phi > \beta')$	7g-(1-,0/30)	() () () (b	$F_n = (1 - \beta / \phi)^2$

註:當ゆ<10°時後用ゆ=0法,此時形狀與理靈深度影響因素均有上限值。

表6.3基礎尺寸與承載力關係表

Qult=C*Nc*Fcs*Fcd*Fci+γ ₂ *Df*Nq*Fqs*Fqd*Fqi+0.5*γ ₁ *B*Nr*Frs*Frd*Fri					
	C= 0.0		$\phi = 31.6$		
	β= 0.0		: 11.40		
B(m)	B/L	Qult(t/m ²)	Qallow(t/m ²)		
10.0	0.25	272.0	106.6		
15.0	0.25	286.4	111.4		
20.0	0.25	303.5	117.1		
25.0	0.25	324.5	124.1		
30.0	0.25	347.9	131.9		
35.0	0.25	370.7	139.5		
40.0	0.25	393.1	147.0		
50.0	0.25	440.5	162.8		
60.0	0.25	487.0	178.3		
10.0	0.50	292.1	113.3		
15.0	0.50	307.7	118.5		
20.0	0.50	326.0	124.6		
25.0	0.50	348.6	132.2		
30.0	0.50	373.7	140.5		
35.0	0.50	398.2	148.7		
40.0	0.50	422.2	156.7		
50.0	0.50	473.2	173.7		
60.0	0.50	523.1	190.3		
10.0	0.75	312.3	120.1		
15.0	0.75	328.9	125.6		
20.0	0.75	348.4	132.1		
25.0	0.75	372.6	140.2		
30.0	0.75	399.4	149.1		
35.0	0.75	425.7	157.8		
40.0	0.75	451.3	166.4		
50.0	0.75	505.8	184.6		
60.0	0.75	559.2	202.4		
10.0	1.00	332.4	126.8		
15.0	1.00	350.1	132.7		
20.0	1.00	370.9	139.6		
25.0	1.00	396.7	148.2		
30.0	1.00	425.2	157.7		
35.0	1.00	453.1	167.0		
40.0	1.00	480.4	176.1		
50.0	1.00	538.4	195.4		
60.0	1.00	595.3	214.4		

表6.4液化時基礎尺寸與承載力關係表

Qult=C*Nc*Fcs*Fcd*Fci+γ ₂ *Df*Nq*Fqs*Fqd*Fqi+0.5*γ ₁ *B*Nr*Frs*Frd*Fri				
	C= 0.0		$\Psi = 30.7$	
β=	0.0	Df= 11.40		
B(m)	B/L	Qult(t/m ²)	Qallow'(t/m ²)	
10.0	0.25	228.5	126.2	
15.0	0.25	237.8	130.9	
20.0	0.25	253.6	138.8	
25.0	0.25	270.6	147.3	
30.0	0.25	289.6	156.8	
35.0	0.25	308.1	166.0	
40.0	0.25	326.3	175.1	
50.0	0.25	364.9	194.4	
60.0	0.25	402.7	213.3	
10.0	0.50	243.3	133.6	
15.0	0.50	253.3	138.6	
20.0	0.50	270.0	147.0	
25.0	0.50	288.2	156.1	
30.0	0.50	308.3	166.1	
35.0	0.50	328.1	176.0	
40.0	0.50	347.4	185.7	
50.0	0.50	388.5	206.2	
60.0	0.50	428.8	226.3	
10.0	0.75	260.3	142.1	
15.0	0.75	270.9	147.4	
20.0	0.75	288.8	156.4	
25.0	0.75	308.2	166.1	
30.0	0.75	329.8	176.9	
35.0	0.75	350.9	187.4	
40.0	0.75	371.6	197.8	
50.0	0.75	415.5	219.7	
60.0	0.75	458.6	241.3	
10.0	1.00	277.2	150.6	
15.0	1.00	288.5	156.2	
20.0	1.00	307.6	165.8	
25.0	1.00	328.3	176.1	
30.0	1.00	351.2	187.6	
35.0	1.00	373.7	198.8	
40.0	1.00	395.8	209.8	
50.0	1.00	442.6	233.3	
60.0	1.00	488.4	256.2	

表6.5基礎尺寸與承載力關係表(承載於粘土層)

表 6.5 基礎尺寸與承載力關係表(承載於粘土層) Qult=C*Nc*Fcs*Fcd*Fci+γ ₂ *Df*Nq*Fqs*Fqd*Fqi+0.5*γ ₁ *B*Nr*Frs*Frd*Fri					
	C=8.1				
β=		ϕ = 0.0 Df= 11.40			
B(m)	B/L	Qult(t/m ²)	Qallow(t/m ²)		
10.0	0.25	68.0	38.6		
15.0	0.25	64.4	37.4		
20.0	0.25	62.6	36.8		
25.0	0.25	61.7	36.5		
30.0	0.25	61.2	36.4		
35.0	0.25	60.8	36.2		
40.0	0.25	60.3	36.1		
50.0	0.25	59.9	35.9		
60.0	0.25	59.4	35.8		
10.0	0.50	70.6	39.5		
15.0	0.50	66.8	38.2		
20.0	0.50	65.0	37.6		
25.0	0.50	64.0	37.3		
30.0	0.50	63.5	37.1		
35.0	0.50	63.1	37.0		
40.0	0.50	62.6	36.8		
50.0	0.50	62.1	36.7		
60.0	0.50	61.7	36.5		
10.0	0.75	73.3	40.4		
15.0	0.75	69.3	39.1		
20.0	0.75	67.3	38.4		
25.0	0.75	66.4	38.1		
30.0	0.75	65.9	37.9		
35.0	0.75	65.4	37.7		
40.0	0.75	64.9	37.6		
50.0	0.75	64.4	37.4		
60.0	0.75	63.9	37.3		
10.0	1.00	75.9	41.3		
15.0	1.00	71.8	39.9		
20.0	1.00	69.7	39.2		
25.0	1.00	68.7	38.9		
30.0	1.00	68.2	38.7		
35.0	1.00	67.7	38.5		
40.0	1.00	67.1	38.3		
50.0	1.00	66.6	38.2		
60.0	1.00	66.1	38.0		

6.3 基礎沉陷量分析

當基礎底下土層受到壓力時,即會發生即時沉陷(彈性沉陷)、壓密沉陷及次要沉陷。即時沉陷於各種土層內均會發生且時間極為迅速;壓密沉陷及次要沉陷一般僅發生於飽和粘性土層內,且需要較長時間才能完成,土層之壓密沉陷量可以下式計算。

$$\Delta H = H*Cc/(1+e_0)*log[(\sigma_0'+\Delta\sigma')/\sigma_0']$$

ΔH:壓密沉陷量, cm

H:壓縮土層厚度,

Cc:壓縮指數,

e₀:壓縮土層原狀孔隙比,

 σ_0 ': 前期有效應力

 $\Delta \sigma$ ': 有效應力增量

即時沉陷是土壤受載重後,由於載重引起剪應力作 用,使得土體扭曲而引起沉陷,此種沉陷係指土體視為彈 性體一般。即時沉陷ΔHi可依下式計算:

$$\Delta Hi = \frac{qB(1-\mu^2)Is}{E}$$

式中q=均布載重,t/m²

B=柔性基礎之寬度,m

μ=蒲松比, μ=0.30

Is=影響因素,詳表6.6

E:不排水彈性模數,3000 t/m²

	· ·			
載重面積形狀	Is			
	中央	角隅	平均	
正方形	1.12	0.56	0.95	
長方形L/B=2	1.52	0.76	1.30	
長方形L/B=5	2.10	1.05	1.83	
圓形	1.00	0.64	0.85	

表6.6均布載重下柔性基礎垂直變形之影響因素

基地預計興建結構物為地上六層、地下三層之大樓,開 挖深度約為11.4公尺。今開挖的土水重約為24.2 tf/m²,大於概 估平均結構荷重14.6 tf/m²,基礎應無沉陷量過大之虞。惟因 承載土層下分布具壓密性質之粘土層,基礎應檢核再壓沉陷 量有無過大之虞。

考慮-13.9m \sim -20.6m間之粘土層為壓縮土層。 前期有效應力 σ_0 '

 $\sigma'_{(-17.3)} = 1.0*1.90 + 3.9*0.90 + 6.4*1.30 + 2.6*0.94 + 3.4*0.90 = 19.23 tf/m^2$

基地開挖完成後之有效應力σι'

 $\sigma_{1'(-17.3)} = 2.50*0.94 + 3.4*0.90 = 5.41 \text{ t/m}^2$

假設筏基尺寸為35m*45m,有效應力q=14.6-10.4=4.2 tf/m^2 ,以1:2向下分佈,因結構荷重所產生之應力增量 $\Delta\sigma'$

 $\Delta \sigma'_{(-17.3)} = 4.2*35*45/[(35+5.9)(45+5.9)] = 3.18 \text{ tf/m}^2$

*初期解壓回脹量ΔHs(不計時間因素),

 Δ Hs=H* Cs/(1+ e₀)* log(σ₁'/σ₀') =-5.5cm(回 脹)

*長期之再壓沉陷量△Hc

 Δ Hc=H*Cs(1+e₀)* log[(σ_0 '+ $\Delta\sigma$ ')/ σ_0 '] =0.7cm(沉陷)

開挖完成後土層不計時間因素,解壓產生之回脹量為5.5公分,大於不計時間因素之長期再壓沉陷量0.7公分,長期評估並無再壓沉量過大之虞。依"建築技術規則建築構造編基礎構造設計規範(含解說)"中,規定鋼筋混凝土構造之筏式基礎容許沉陷量為30公分,其基礎於上述條件下,沉陷量應可符合規範要求。

6.4 地下水上浮力之影響

基地預計興建地上六層、地下三層之建築物,預計開挖深度約為11.4公尺,概估平均結構荷重約為14.6 t/m²。建議基地地下高水位約位於地表下1.0公尺處,依水壓力分布計算,最大之地下水上浮力約為10.4t/m²,抗浮安全係數FS=14.6/10.4=1.40>1.05,結構物完成後,應不受地下水上浮力影響。

另外建築物若有高、低層區及地面挑空區,其局部構造 荷重小於地下水浮力,除應加強構造強度外,另可採取其他 抗浮工法,增加地下水浮力之穩定性。於施工期間,未完成 之基礎工程,要注意突遇暴雨時之抗浮能力。

6.5、擋土設施之選擇

擋土壁係承受地盤開挖所產生之土壓力與水壓力,並將 此等壓力傳遞到支撐構材。

- 一般常見之擋土壁工法有:
- 1.主椿横板條工法(鋼軌樁)
- 2.板椿工法
- 3.排椿式地下連續壁工法
- 4.壁式地下連續壁工法

在基礎工程作業上最感困擾的乃是對周圍地盤之影響與 噪音、振動等問題。此等問題在多數的開挖工程中,尤其都 市地區之施工中,大多難以忍受,特別是因開挖作業而導致 周圍地盤之沉陷問題,更應考慮。

基地預計開挖深度約為11.4公尺,依基地周圍現況及土層分布情況,擋土設施建議採用預壘樁或連續壁,內部支撐系統以H型鋼內撐。

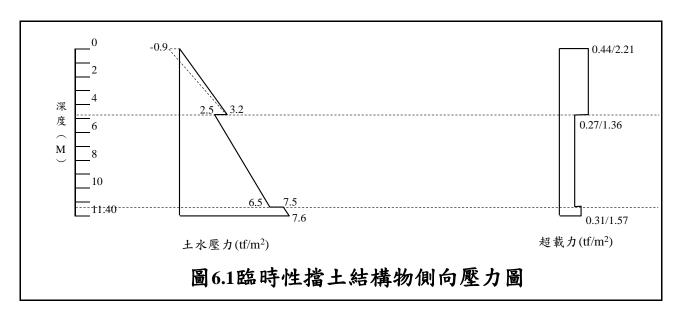
6.6 侧向壓力之分析

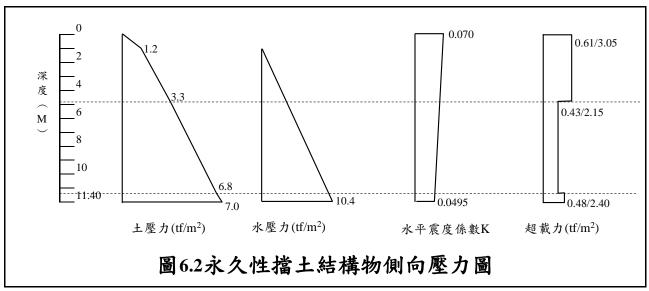
本工程預計開挖深度約為11.4公尺,地下室開挖及地下室 之設計應考慮側向土壓力對擋土工及地下室側壁之影響。

- 1. 土壓力係數:臨時開挖支撐之側向土壓力採用主動土壓力係數 ka,永久性結構壓力係數 $Ko=1-sin\phi$ 。
- 2. 地震力:根據"建築物耐震設計規範",建築物地下各層施加之設計水平地震力,為該層靜載重乘以該層深度對應之水平震度K。水平震度K依下式計算:

$$K \ge 0.1(1-H/40) S_{DS}*I$$

其中

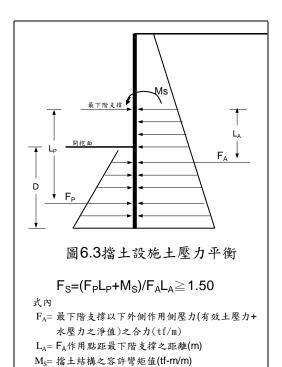

Sps:工址短週期設計水平譜加速度係數,本案為0.70


I:為用途係數,本案為1.0

H:為自地表面往下算之深度。 H 大於 20 公尺時以 20 公尺計。本案為0.0m~11.4m

- 3. 道路側超載力考慮一般超載如施工機具、材料等估計以1.0 tf/m²計算;鄰房側超載力以5.0 tf/m²計算。
- 4. 水壓力則依4.3節所述之水位資料,基地平時之最高地下水位,建議以位於地表下3.0公尺處計算。考慮長期性及季節性水位變化等因素之影響,於基礎設計時,其最高地下水位採用位於地表下1.0公尺依靜態水壓力分析。

依分析所得本基地的側向土壓力及水壓力分布,如圖6.1 及圖6.2所示。



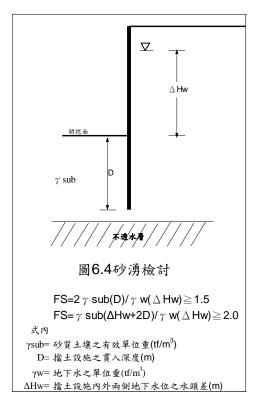
6.7、開挖穩定性分析

一般基礎或擋土工程,開挖底部土壤之穩定分析,應包括擋土結構物之貫入深度、開挖底部土壤之砂湧檢討、隆起破壞及上舉破壞等,分別檢討如下。

6.6.1 擋土結構物貫入深度

基地預計開挖深度約為

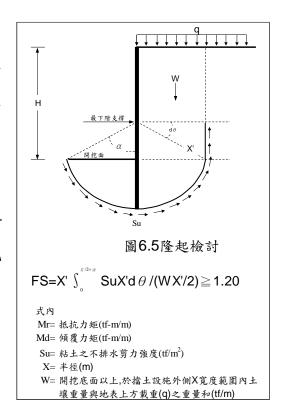
F_P= 最下階支撐以下內側作用側土壓力之合力(tf/m)


 L_{P} = F_{P} 作用點距最下階支撐之距離(m)

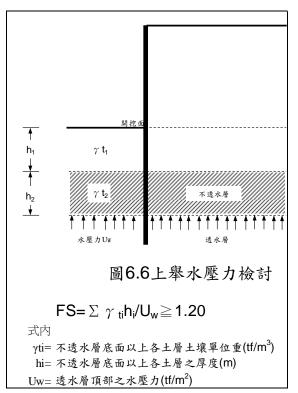
11.4公尺,採用Rankine-Resal側壓計算式。最後一段支撐位於開挖底面上3.4公尺,地表荷重假設為5.0 tf/m²。建議貫入深度為12.1公尺,即擋土結構之長度約為23.0公尺,分析計算詳附錄八。

6.6.2 砂湧之檢討

依據內政部基礎構造設計規範之規定,擋土設施貫入深度範圍內如係透水性佳之砂質土壤時,應檢核其抵抗砂湧之安全性,如圖6.4所示。


基地預計開挖深度約為11.4 公尺,基礎底部為砂土層,經計 算 安 全 係 數 分 別 為 $FS_1=2.71>1.50$; $FS_2=3.65>2.00$, 皆大於規範要求,開挖面應無發 生砂湧現象之可能。

6.6.3 隆起之檢討


依據內政部基礎構造設計規範之規定,開挖面下方土層係軟弱粘土時,應檢討其抵抗塑性隆起之穩定性,如圖6.5所示。

基地預計開挖深度約為11.4 公尺,基礎底部為砂土層,基地 開挖面應不致產生隆起現象,分 析計算詳附錄八。

6.6.4 上舉力之檢討

基地預計開挖深度約為

11.4公尺,雖基礎底部為砂土層,惟開挖深度達11.4公尺時, 地表下20.6公尺以上之土水重約為17.6 t/m²,而該處之地下水 上舉力為17.6 t/m²,上舉安全係數FS=1.00<1.20。建議基礎施 工時,需針對第六層之粉土質細砂層進行水壓力監測,控制第 六層水壓力小於17.6/1.2=14.7 t/m²,避免開挖面產生上舉現 象。

七、施工方法與安全措施建議

7.1 開挖施工方法建議

本工程基礎開挖時,擋土設施建議採用預壘樁或連續壁。 內部支撐若以H型鋼作為水平支撐及橫擋之施工方法時,每層 水平支撐之斷面均須詳加檢核,並應確保水平支撐之精確度。 於採用水平支撐工法時,建議配合下述之措施:

- 1. 第一段開挖之無支撐深度不應超過1.5公尺,開挖後並應立即 架設支撐,以避免擋土結構產生太大之變位而影響鄰近區域 之安全。
- 2. H型鋼之水平支撐應加適當之預力。
- 3. 每階段之開挖應嚴加控制,不得超挖。
- 4. 随時依據監測系統所獲得之資料,檢討每階段開挖之步驟及 施工方法,必要時得調整之。

7.2 開挖安全監測系統建議

基地預計開挖深度約為11.4公尺,於開挖及建造過程中, 或可配合監測系統監測之結果,隨時採取應變措施。茲就一 般開挖現場可能發生之災害分述如下:

- 1. 描土壁側向變位或地表沉陷量超過警戒值時,可能導致四 問路面裂開,鄰房地面及牆壁產生裂縫。
- 2.擋土壁底位移量有增加之趨勢時,當增加量過大時,可能 導致隆起,使得支撐系統破壞。
- 3.支撐荷重超過容許值,安全係數降低,影響支撐系統整體 安全。
- 4.沉陷點與傾斜計監測值超過警戒值,造成鄰居之差異沉陷或傾斜過大。

表7.1為一般建築開挖工程,常見之監測儀器及監測頻率。實際使用項目,應由基礎工程設計者,以維護基礎開挖及鄰近結構物、設施等之安全規劃之。表7.2及表7.3為於設計階段及施工階段,基礎工程突遇狀況,緊急應變處理之建議表。

表7.1一般建築開挖工程監測儀器及頻率

監測項目	儀器名稱	儀器個數	監測頻率
擋土結構變形及傾 斜	傾度管	處	每逢基地挖土前後,支撐施加預力及 拆除前後,平時每週一次,開挖階段 每週至少二次,必要時隨時觀測
はてレルカレ麻	水壓式水壓計	支	平時每週二次,抽水時每天一次
地下水位及水壓	水位觀測井	支	平時每週二次,必要時每天一次
開挖面隆起	隆起桿	支	開挖階段每天至少一次,平時每週二 次
支撑應力及應變	振動式應變計	個	每天一次
道路及建築物沈陷 量	沈陷觀測釘	個	平時每週一次,必要時隨時觀測
筏式基礎沈陷量	沈陷觀測釘	個	每層澆築混凝土前後,平時每十天一 次
擋土壁鋼筋應力	鋼筋計	支	基地開挖時每天一次,平時每週二次

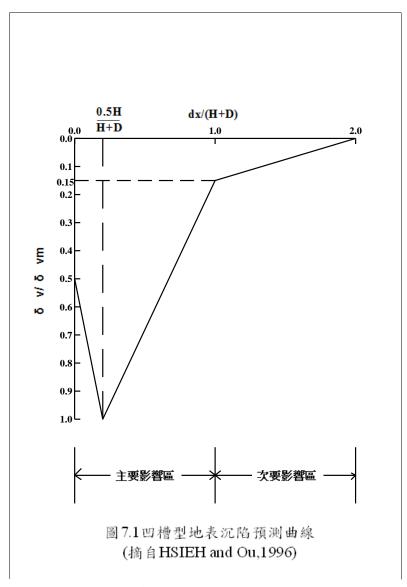
表7.2應變計劃表

量測所得狀況	可能發生狀況	應變措施
擋土壁側向變位太大	工地四周路面開裂	1.暫停開挖
地面沈陷增加	鄰近地面及牆壁產生破	2.可先行架設支撑者,先予架設,並
周圍地層側向位移量太大	壞性裂縫	考慮水平支撐施加預壓提高至設計
因地層及地下水影響引起之		荷重的50%以上
地盤下陷		3.周遭基礎實施低壓地盤改良灌漿,
		增加基礎強度
		4.採用氣壓、深井排水等輔助工法
鄰房傾斜或差異沈陷太大	鄰房結構有安全顧慮	1.增加鄰房側保留土台寬度
		2.鄰房基礎實施低壓地盤改良灌漿
		3.檢討鄰房結構安全
擋土壁底部之位移量不斷	基底土層隆起破壞現象	1.停止開挖
增大趨勢		2.於基地內及基地邊緣土台緊急回填
		3.必要時開挖底部以下再作地盤加強
		灌漿
		4.若至基礎版深度,則用島式分區開
		挖並於最短期間內進行各區基礎版
		混凝土澆注工作
擋土壁局部出現漏洞	地下水不斷湧入基地內	1.以砂包或泥土將缺口堵住
	带入砂土,造成路面下	2.檢查公共設施是否損壞,若已破
	陷	壞則須修護
		3.於下陷處擋土壁缺口外緣實施低壓
		速凝止水灌漿,將水路截斷
支撐荷重超過容許荷重	影響支撐系統整體的安	1.減少水平支撐的有效無支撐長度,
	全	提高支撐容許荷重
		2.用小斜撐支撐,以加強側向抵抗能
		カ
		3.加設水平支撐以分擔若干荷重
擋土壁撓度過大	壁體應力超過容許應力	1.基地開挖階段:內撐系統各支撐應
	發現明顯結構裂縫影響	加強預壓,以緩和擋土壁撓度及應
	擋土壁安全	カ
		2.支撑拆除時:必要時應加設暫代斜
		撐,以確保結構體安全

表7.3緊急狀況處理建議表

狀況	處理不當狀況	建議處理方式	事先預防方式
擋土壁出現	1.壁體外地層掏空	1.以砂包或泥土堵住	1.注意擋土壁施工品質
大量水及砂	2.公共設施及管線嚴	2.檢查公共設施及管線受擠情	2.充份瞭解地層狀況及可能砂
湧	重受損	形	湧處
		3.積極處理後續狀況	3.點井降低水位應有抽水計劃
鄰房差異沈	1.結構物持續破壞	1.挖土期間則暫停挖土,爭取	1.管制施工品質
陷太大及傾	2.鄰房糾紛或索賠,	 時效完成支撐,並提高預壓	2.瞭解施工重點,監測公司預
斜或結構物	甚至停工) カ	
出現裂縫	3.公共設施管線受損	2.考慮低壓填縫灌漿,或其它	3.施工前鑑定重要鄰房
	4.公共危險	土壤改良方式,再依鄰房結	4.不超挖
		 構材料檢討安全性	
		3.儘量增加鄰房側土台之寬度	
支撑超過容	1.支撐系統失敗造成	1.增加水平支撐數量,或減少	1.注意將構台支承樁與中間樁
許荷重或施	公共危機	 有效無支撐長度	分開
工不良而潛	2.停工及賠償	2.尋出主要原因並處理之,如	2.動員加強檢查支撐系統施工
藏危機		温度太高等	並注意盲點或弱點
		3.掌握先機,改良施工不良處	3.同步預壓
			4.監測公司配合管制預壓過程
開挖面土壤	1.水平支撐挫曲	1.停止挖土,降低水位	1.管制抽水計劃
隆起量過大	2.連續壁結構扭曲	2.基地邊緣土台緊急回填	2.不超挖且筏基工程進度適當
;配合傾斜		3.考慮分區,以島式施工	3.監測公司確實觀測及反應
儀底部土層		4.進行地質改良	4.壁體深度選擇適當
位移量持續		5.加速完成筏基大底	
變大			
連續壁側向	1.鄰房結構物破壞	1.檢討造成之原因並預測未來	1.了解土層狀況及充份了解設
位移太大,	2.壁體應力太大導致	破壞狀況	計考量
工地四周路	危險及壁體結構之	2.加強內支撐系統	2.同步預壓,減少弱點
面開裂,鄰	安全	3.地質改良或增設內RC牆	3.監測公司及早發現變形,或
房開裂			鋼筋計逼近設計應力
			4.拆除斜撑時,加設暫代斜撐
持續驟雨	1.對整個安全系統	1.避免持續外加荷重	1.施工規劃及協調完善
震動 重車	產生不利影響,		2.構台勿用中間樁支承
等外加荷重	甚至失敗		
太大			
擋土壁外水	1.連續壁變形過大	1.增加觀測	1.對較不良或大型水管事先保強
管破裂	2.支撐軸力過大	2.加臨時支撐	2.施工注意水管之情況,並作事
		3.修理水管	先管線調查
		4.基地外暫時抽水	
備註:本表信	堇供初步参考,遇狀況仍	應根據現場情況綜合研判後再處理	

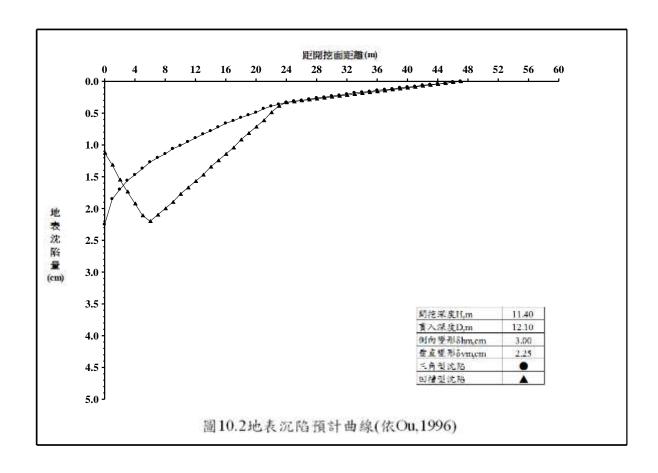
7.3 開挖時周圍地盤沉陷量分析


由於開挖或多或少皆會造成鄰近地盤的沉陷,而損及鄰房及公共設施。根據Hsieh & Ou(1995)的研究,開挖引致地表沉陷曲線型態有凹槽型及三角槽型。根據深開挖的觀測結果,認為發生此兩種型態之最主要原因,在於擋土壁的變形大小及型式。若第一階段開挖即引致較大的壁體變位,而後續的開挖變位量較少或繼續造成壁體頂端類似懸臂式的變形,則較易產生三角槽型的沉陷。若第一階段開挖之壁體變形,則較易產生三角槽型的沉陷。若第一階段開挖之壁體變位不大,當繼續後續階段的開挖時,雖然壁體繼續變形,然而支撐位置之壁體變位增加不多,開挖面處之壁體變形量增加很多,則沉陷曲線趨向產生凹槽型。

三角槽型沉陷估計:

$$\delta v = [-0.85(\frac{dx}{H+D})^{1/2} + 1] \delta v m$$

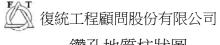
$$\delta v = [-0.362(\frac{dx}{H+D})^{1/2} + 0.512] \delta v m$$


凹槽型沉陷估計如圖7.1所示:

若可知擋土壁之最大側向變形&hm,則可以&hm估計&vm是較佳方法,一般可採&vm=(0.5~0.75) &hm,但對軟弱土壤,&vm有時可能達1.0&hm以上。

由於開挖面外側建築物基礎皆位於地表下相當深度的位置,以上述方法估計地表沉陷略有不同。根據Hsieh & Qu(1996)之研究,地表下建築物基礎之沉陷情形以地表沉陷折減 M值來預估。當建築物基礎在H/2以內時,M=1;當建築物基礎在H/2以下時,M=0.8+0.4(1-h/H)。式中H為開挖深度,h 為地表下深度。

基地預計開挖深度約為11.4公尺,基礎開挖時,因擋土結構側向變形,引致之周圍地盤沉陷應特別注意。假設擋土壁最大變形δhm=3.0cm,地表最大沉陷δvm=0.75δhm,M=1.0。圖7.2為地表沉陷預測曲線,以凹槽型變形為例,距開挖面約5.7公尺處,有最大沉陷量約2.25公分,距開挖面約23.5公尺外,沉陷量之變化極低約介於0.34~0.00公分之間。



八、結論及建議

- 1.依基地區域地質分佈情況,基地地層屬近代沖積層,鑽探深度內土層以粘土層、卵礫石及砂土為主。基地平時地下水建議以位於地表下3.0公尺處,長期之高水位,建議以位於地表下1.0公尺。
- 2.根據區域地質資料,基地鄰近第一類活動斷層一彰化斷層。依現行耐震設計規範,需考慮鄰近車籠埔斷層之近斷層效應。基地距離車籠埔斷層約為17.6公里,其放大係數NA及Nv皆為1.0。
- 3.根據基地土壤之特性及建築規劃型式,基地預計新建地上 六層、地下三層之建築物,預計開挖深度約為11.4公尺, 根據基地土壤之特性及建築規劃型式,基地建築物之基礎 型式建議採用筏式基礎。基礎承載力及沉陷量經檢討,符 合規範需求。
- 4.基地擋土設施建議採用預壘樁或連續壁,內部支撐可採用型鋼內撐,擋土結構之長度建議採用23.5公尺。開挖面穩定分析結果,砂湧、隆起現象,皆符合規範要求;基礎施工時,需針對第六層之粉土質細砂層進行水壓力監測,控制第六層水壓力小於17.6/1.2=14.7 t/m²,避免開挖面產生上舉現象。
- 5.根據"建築物耐震設計規範及解說",基地位於彰化縣彰化市,依基地地表下30公尺以上土層之N值計算,基地地盤屬第二類地盤。查得工址短週期設計水平譜加速度係數 S_{DS} =0.70,工址短週期最大考量設計水平譜加速度係數 S_{MS} =0.90。

- 6.基地土壤液化安全係數及液化後安全評估詳表5.4~表5.7,液化後之損害程度,中小地震 $A=0.4S_{DS}g/4.2=0.084g$ 時,屬 "無液化"; 設計地震時(地表水平加速度 $A=0.4S_{DS}g=0.352g$),及最大考量地震時(地表水平加速度 $A=0.4S_{MS}g=0.420g$ 時),單點評估深度皆為"輕度液化"為主,累積地表下20.0公尺以上之 P_L 時,亦以"輕度液化"為主。
- 7.依建築技術規則構造編第48條之1:「建築基地應評估發生地震時,土壤產生液化之可能性,對中小度地震會發生土壤液化之基地,應進行土質改良等措施,使土壤液化不致產生。對設計地震及最大考量地震下會發生土壤液化之基地,應設置適當基礎,並以折減後之土壤參數檢核建築物液化後之安全性。」
- 8.基地基礎承載層為砂土層,分析砂土層於產生土壤液化時, 所提供之容許承載力應可大於概估平均結構荷重。研判,基 地砂土層土壤液化情況,應不會影響建築基礎安全。依規 範,建議基礎結構耐震設計時,地盤反力係數依規範建議依 表5.3所示折減之即可。

附錄一 鑽孔地質柱狀剖面圖

鑽孔地質柱狀圖

工程名稱:彰化縣彰化市成功段630等地號地質鑽探及試驗分析工作

地點:光復路

日 期:1061016~1061123

鑽孔編號:BH-1

鑽孔標高:13.10 M

地下水位:2.50 M 專業技師:侯海樹

輸入人員:侯海樹

深 度:30.00 M

座標系統:TW97

座 標 N: 2664058.00

座 標 E: 203272.00

鑽探公司:復統工程顧問股份有限公司

/木 /文·30,	00 111		庄保尔凯·1W7/)E. 1:	11 2	004030.00	,	Æ.	- N. L. Z	03272.00	,	254	11/4 -1	124/1011	と框列 円 ガスレ	JAMA	_1	
深度 (m) 0	取樣記錄	標準貫入	岩石或土壤性質描述	地質 圖元	回收率 (%)	RQD 25 50 75	RQD(%)	統一土 壤分類 ()	礫 石 (%)	砂 (%)	粉 土 (%)	黏 土 (%)	含水 量 (%)	統體單 位重 (t/m^3)	液性 限度 (%)	塑性 限度 (%)	塑性 指數 (%)	比 重 ()	空隙 比 ()
	S-01-0	4+4+4	0.0~0.7地表水泥及回填 級配夾粘土、砂土 0.7/M																
2 $\sqrt{\frac{106/10}{}}$	S-02-1	3+4+4	0.7~4.3棕灰色粉土質黏土和細砂					CL	0.0	10.8	64.9	24.3	28.6	1.85	37.2	22.2	15.0	2.72	0.89
4	T-01-1 S-03-0		4.3~9.2灰色卵礫石夾租 中砂	, o o															
H043财输验01	(S-04-0) (S-05-0)			, 00	! !														
黎 	(S-06-0)		9.2 M																
2	S-07-0	19+50/8	9.2~11.1灰色礫石夾粗 中砂	, , ,															
12	S-08-1 T-02-1	7+9+11	11.1 M 11.1~13.7灰色粉土質中 細砂偶夾礫石					SM	0.0	65.8	25.1	9.1	22.8	1.98		NP	NP	2.67	0.66
14	S-09-1	6+7+8	13.7 M 13.7~20.2灰色粉土質粘	<u></u>				SM	0.0	64.1	26.3	9.6	20.9	1.93	_	NP	NP	2.68	0.68
16	S-10-1 T-03-1	3+5+6	土含細砂	<u></u>				CL	0.0	4.7	69.5	25.7	23.7	1.89	36.9	20.2	16.7	2.73	0.79
	S-11-1 S-12-1	4+6+7		<u></u>				CL	0.0	8.7	58.5	21.8	30.9	1.91	38.6	23.2	15.4	2.74	0.74
18	S-13-1		20.2	<u>*</u>				CL	0.0	7.0	67.7	25.3	30.3	1.85	39.2	22.1	17.1	2.72	0.91
20			20.2 M	· — **	:			- 1 -											

座 標 N: 2664058.00

鑽孔地質柱狀圖

工程名稱:彰化縣彰化市成功段630等地號地質鑽探及試驗分析工作

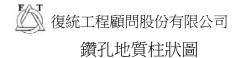
地點:光復路

日 期:1061016~1061123

鑽孔編號:BH-1

鑽孔標高:13.10 M

地下水位:2.50 M 專業技師:侯海樹 輸入人員:侯海樹


深 度:30.00 M

座標系統:TW97

座 標 E: 203272.00

鑽探公司:復統工程顧問股份有限公司

		鑽孔	取樣	標準		地質	回收率			統一土	礫	砂	粉	黏	含水	統體單	液性	塑性	塑性	比	空隙
深J (m)	度	水位	記錄	貫入	岩石或土壤性質描述	圖元	(%)	RQD	RQD(%)	壤分類	石		土	土	量	位重	限度	限度	指數	重	比
(111)	20	> J + Jaca	ВСЖ	247				25 50 75		()	(%)	(%)	(%)	(%)	(%)	(t/m^3)	(%)	(%)	(%)	()	()
			0.14.1	7.0.10	13.7~20.2灰色粉土質粘/	- <u></u> :	1			CM	0.0	01.2	12.0	4.0	17.5	1 02		ND.	ND.	2.66	0.62
			5-14-1	7+9+12			+			SM	0.0	81.3	13.8	4.9	17.5	1.93		NP	NP	2.66	0.62
					20.2~23.4灰色粉土質中	· · · · ·]														
	- 22		S-15-1	7+10+13	細砂	-	1			SM	0.0	78.5	15.8	5.7	17.6	1.95		NP	NP	2.67	0.61
			5 15 1	7110113	1	<u></u>						70.5				11,75		- 112			
					23.4 M	· •	1														
	_ 24		S-16-1	8+11+14	23.4~30.0灰色粉土質粘	_	Į			CL	0.0	5.0	69.1	25.9	29.6	1.93	38.4	22.0	16.4	2.74	0.84
					土含細砂		7														
			S-17-1	51010		<u></u> =	‡			CL	0.0	4.3	69.6	26.1	40.2	1.88	42.3	21.3	21.0	2.74	1.04
±Ε	2.5		3-17-1	J+0+3		_	Į			CL	0.0	4.5	09.0	20.1	40.2	1.00	42.3	21.3	21.0	2.74	1.04
= 2	- 26						7														
₩ <u></u>			S-18-1	6+8+10			‡			CL	0.0	8.3	66.8	25.0	39.3	1.94	43.1	22.6	20.5	2.73	0.96
蒙二						_	Į														
으트_	- 28		0.10.1				7			- CT		0.1	- (1	24.7	26.5	1.02	20.6	22.6	17.0	2.72	0.04
,,			S-19-1	6+8+11		<u></u> =	‡			CL	0.0	9.1	66.1	24.7	36.5	1.92	39.6	22.6	17.0	2.73	0.94
' `							Į														
	20		S-20-1	7+8+12	30 M		1			CL	0.0	4.7	69.3	26.0	40.2	1.91	42.9	24.2	18.7	2.74	1.01
	- 30																				
E																					
=	- 32																				
	2.4																				
	- 34																				
	- 36																				
	20																				
	- 38																				
	40																				
	40									2											

工程名稱:彰化縣彰化市成功段630等地號地質鑽探及試驗分析工作

地點:光復路

日 期:1061016~1061123

鑽孔編號:BH-2

鑽孔標高:13.30 M

專業技師:侯海樹

輸入人員:侯海樹

深 度:30.00 M

座標系統:TW97

座 標 N: 2664061.00

地下水位:3.60 M

座 標 E: 203294.00

鑽探公司:復統工程顧問股份有限公司

	2 30.00			王小八八八		/ _ 1/		001001.0	•	/==-		,05271.00			3/1-2-3	1200000	E/世界 1円 7月又 1	3 /3 100 1	~	
深度 (m) 0	鑽孔 水位	取樣記錄	標準貫入	岩石或土壤性質描述	地質 圖元	回收率 (%)	RQD 25 50 75	1	統一土 壤分類 ()	礫 石 (%)	(%)	粉 土 (%)	黏 土 (%)	含水 量 (%)	統體單 位重 (t/m^3)	液性 限度 (%)	塑性 限度 (%)	塑性 指數 (%)	比 重 ()	空隙 比 ()
-		S-01-1	3+3+3	0.0~0.7地表水泥及回填 級配夾粘土、砂土 0.7/M					CL	0.0	11.8	64.2	24.0	24.8	1.96	38.6	22.2	16.4	2.73	0.74
2		S-02-1	4+4+4	0.7~4.8棕灰色粉土質黏土和細砂	<u></u>				CL	0.0	7.8	67.1	25.1	21.1	1.90	37.4	23.5	13.9	2.74	0.75
4	106/10/25	S-03-1	5+4+5	4.8 M	<u>*</u>				CL	0.0	9.2	66.1	24.7	24.3	1.91	39.0	24.0	15.0	2.73	0.77
H043別常級01 3		(S-04-0)	50/2	4.8~9.6灰色卵礫石夾租 中砂																
6 		(S-05-0)	50/12																	
ω		(S-06-0)																		
10		S-07-0		中砂 11.1 M																
12		S-08-1	4+7+10	11.1~14.6灰色粉土質中 細砂偶夾礫石	<u>.</u>				SM	0.0	64.3	25.9	9.8	22.8	1.98	_	NP	NP	2.68	0.66
14		S-09-1	6+8+8	14.6 M					SM	0.0	65.2	26.1	8.7	20.9	1.93		NP	NP	2.68	0.68
		S-10-1	4+5+5	14.6 M 14.6~21.8灰色粉土質粘 土含細砂					CL	0.0	5.2	70.2	24.6	23.7	1.89	35.5	18.8	16.7	2.73	0.79
16		S-11-1	4+5+6		<u>_</u>				CL	0.0	9.6	66.9	23.5	25.0	1.91	36.8	22.0	14.8	2.74	0.79
12		S-12-1	4+6+6		<u>*</u>				CL	0.0	8.0	66.8	25.2	29.4	1.93	34.8	19.6	15.2	2.73	0.83
20		S-13-1	5+6+7	21.8 M	<u></u>				CL - 1 -	0.0	7.9	67.1	25.0	29.0	1.85	38.5	21.7	16.8	2.73	0.90

工程名稱:彰化縣彰化市成功段630等地號地質鑽探及試驗分析工作

地點:光復路

日 期:1061016~1061123

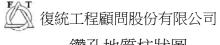
鑽孔編號:BH-2

鑽孔標高:13.30 M

地下水位:3.60 M

專業技師: 侯海樹

輸入人員:侯海樹


深 度:30.00 M

座標系統:TW97

座 標 N: 2664061.00

座 標 E: 203294.00

沐		£ · 30.00	11/1		坐標系統・IW9/		12. 1	示 IV· ZU	04001.00	J	坐	保 止・ Δ	03234.00	J	쎚	1 A D .	及沙山上信	壬頫 円版刊	J. HIK A	-1	
										統一土	礫	砂	粉	黏	含水	統體單	液性	塑性	塑性	比	空隙
深度	¥	鑽孔	取樣	標準	岩石或土壤性質描述	地質	回收率	RQD	RQD(%)		石	1)	土	土	量	位重	限度	限度	指數	重	比
(m)	Z	水位	記錄	貫入	石口以上塔比貝田匹	圖元	(%)		NQD(%)			(01)									
(111)	20							25 50 75		()	(%)	(%)	(%)	(%)	(%)	(t/m^3)	(%)	(%)	(%)	()	()
					14.6~21.8灰色粉土質粘	<u></u>	.														
			S-14-1	5+7+7	土含細砂		:			CL	0.0	9.2	66.5	24.3	28.7	1.85	38.0	21.8	16.2	2.72	0.89
					21.8 M	<u></u>	.														
	22																				
	22		S-15-1	8+9+12	21.8~24.8灰色粉土質中					SM	0.0	80.6	13.4	6.0	18.5	1.93	_	NP	NP	2.68	0.65
					細砂																
E			S-16-1	8+10+13	1					SM	0.0	82.4	11.2	6.4	19.0	1.95		NP	NP	2.67	0.63
	24		5 10 1	0110113	1					- 5111		02.1	11.2			1.75		- 111		2.07	0.03
					24.8 M	· · · ·															
			S-17-1	5,6,7	24.8~30.0灰色粉土質粘					CL	0.0	5.3	70.4	24.3	37.4	1 00	39.6	20.7	18.9	2.73	1.00
т⊨			3-17-1	3+0+7	土含細砂		.			LL LL	0.0).)	70.4	24.3	37.4	1.88	39.0	20.7	10.9	2.13	1.00
⇒ ===	26				工日細砂																
≓દ			~																		
쫄=_			S-18-1	6+7+8			:			CL	0.0	6.0	68.0	26.0	36.5	1.94	41.6	21.8	19.8	2.73	0.92
二線																					
9⋿_	28						:														
H043以徐扆01 4	20		S-19-1	6+8+8	1		.			CL	0.0	8.5	65.7	25.8	38.0	1.92	40.2	20.7	19.5	2.73	0.96
4					1		.														
							:														
E	20		S-20-1	6+8+10	30 N	(.			CL	0.0	7.2	67.7	25.1	39.2	1.91	39.7	20.3	19.4	2.73	0.99
	30		- 20 1	010110		 							<u> </u>					20.5		2.75	· · · · · ·
	32																				
	34																				
=																					
E	2.5																				
	36																				
E																					
	38																				
F																					
	40																				
				•	•	•			•					•							

工程名稱:彰化縣彰化市成功段630等地號地質鑽探及試驗分析工作

地點:光復路

日 期:1061016~1061123

鑽孔編號:BH-3

鑽孔標高:13.30 M

地下水位:3.10 M

輸入人員:侯海樹

深 度:25.45 M

座標系統:TW97

座 標 N: 2664046.00

專業技師: 侯海樹 座 標 E: 203315.00

操作																		
106/10728 1-2+3+4 106/10728 1-2+3+4 106/10728 1-3+4+5 106/10728 1-3+4+5 106/10728 1-3+4+5 106/10728 1-3+4+5 106/10728 1-3+4+5 106/10728 1-3+4+5 106/10728 1-3+4+5 106/10728 1-3+4+5 106/10728 1-3+4+5 106/10728 1-3+4+5 106/10728 1-3+4+5 106/10728 1-3+4+5 106/10728 1-3+4+5 106/10728 1-3+4+5 106/10728 1-3+4+5 1-3+4+5 106/10728 1-3+4+5	(m)		標準貫入	岩石或土壤性質描述		_	 壤分類	石		土	土	量	位重	限度	限度	指數	重	比
		S-01-1	2+3+4	級配夾粘土、砂土 /	<u>-</u> -		CL	0.0	10.5	66.6	22.9	24.6	1.89	36.7	21.5	15.2	2.73	
	2	T-01-1		0.6~5.1棕灰色粉土質黏	<u>**</u>													
	4				<u>_</u> _													
					··· - -		CL	0.0	11.3	66.2		24.0	1.91	35.5	21.2	14.3	2.74	0.78
	H043	(S-04-0)	(50/12)		, ° %													
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	S-05-0	15+50/14		, 00													
	σ ₁	(S-06-0)	50/13	8.7~11.0灰色礫石夾粗	, o													
	10	S-07-0	50/12		ిం్													
	12	S-08-1	5+7+7	11.0~13.6灰色粉土質中	- <u>-</u>		SM	0.0	84.5	8.0	7.5	22.8	1.93		NP	NP	2.67	0.70
		S-09-1	5+7+8	13.6 M	<u>.</u>		SP-SM	0.0	89.0	8.2	2.8	22.2	1.90		NP	NP NP	2.66	0.71
	14			13.6~20.3灰色粉土質粘	<u></u>									27.6				
	16	$\overline{}$	4+3+0		<u>-</u>		_ CL	0.0	19.3	38.8	21.9	24.1	1.93	37.0	22.2	15.4	2.12	0.75
S-13-1 5+7+8 S-13-1 5+7+8 CL 0.0 7.3 67.4 25.2 28.7 1.91 39.1 22.5 16.6 2.73 0.84 CL 0.0 15.0 61.9 23.1 33.7 1.90 38.1 23.4 14.7 2.72 0.91		S-11-1	5+5+7		<u></u>		CL	0.0	8.6	66.5	24.9	22.8	1.96	38.6	22.5	16.1	2.73	0.71
S-13-1 5+7+8 20.3 M CL 0.0 15.0 61.9 23.1 33.7 1.90 38.1 23.4 14.7 2.72 0.91	18	S-12-1	5+6+7		<u> </u>		CL	0.0	7.3	67.4	25.2	28.7	1.91	39.1	22.5	16.6	2.73	0.84
	20	S-13-1	5+7+8	20.3 M			CL	0.0	15.0	61.9	23.1	33.7	1.90	38.1	23.4	14.7	2.72	0.91

工程名稱:彰化縣彰化市成功段630等地號地質鑽探及試驗分析工作

地點:光復路

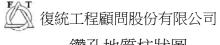
日 期:1061016~1061123

鑽孔編號:BH-3

鑽孔標高:13.30 M

專業技師:侯海樹

輸入人員:侯海樹


深 度:25.45 M

座標系統:TW97

地下水位:3.10 M 座 標 N:2664046.00

座 標 E: 203315.00

操作	沫	及・23.4	- J M		坐保系統・IW9/		生 1	示 N· ZU	04040.00	,	坐	保 止・ 2	05515.00	,	妲	沐 公 可 ·	1夕3儿—1	王惟只19171又1	J. HIK A	<u>1</u>	
深度										統一十	延	Tr/>	粉	私上	今水	統體 留	液性	朔샢	朔妊	FF	左 階
体及 水位 記錄 貫入 石口以上集性負担処 圖元 (%) NQD NQD(%) 集力無 口 工 工 工 工 工 工 NC NC NC	次中	鑽孔	取樣	標準	リフ→よ [. 車が形だけがま	地質	回收率	DOD	DOD((())	神八統		шу									
13.6 - 20.3 茨色粉上質性 20.3	深没	水份	記錄	貫入	石石以土壌性負抽処	圖元		RQD	KQD(%)												
S-14-1 7-88-11 13-6-20.3 24-24 25-25 24-25 25-25 25-45 25-45 24-25 25-45 25-45 24-25 25-45 24-25 25-45 24-25 25-45 24-25 25-45 24-25 25-45 24-25 25-45 24-25 25-45 24-25 25-45 24-25 25-45 24-25 25-45 24-25 25-45 24-25 25-45 24-25 25-45 24-25 25-45 24-25 25-45 24-25 25-4	(111)	7,412	HC MA					25 50 75		()	(%)	(%)	(%)	(%)	(%)	(t/m^3)	(%)	(%)	(%)	()	()
S-14-1 748-11	= 2	, L			13 6~20 3灰色粉+質粘																
Total 20.3 24.2 24.2 M 24.2 25.15 749+12 24.2 M 25.45			S-14-1	7+8+11	L \$4015/\ 20.3 20.3 \tag{10.3 \	·				CI	0.0	12.6	63.7	23.8	17.7	1 94	39 5	24 1	15 4	2 72	0.65
T-03-1 S-15-1 7-59-12 20.3-24-2次色粉土質中			5 11 1	710111	上古細切 20.5 加							12.0	03.7			1.71	37.3	21.1	13.1	2.72	0.05
Simple			T-03-1		20.3~24.2灰色粉土質中																
S.15-1 7-9+12 2 24.2 別 2.66 0.61	<u> </u>	2			1 × H 6/1)																
S-16-1 7+9+12 24.2 M			S-15-1	7+9+12	100					SM	0.0	83.7	12.1	4.2	20.5	1.99	_	NP	NP	2.66	0.61
S-16-1 7-9+12 24.2 M	=																				
S-16-1 7-99+12 24.2 M 1.93 - NP NP 2.66 0.65 S-17-1 6+8+9																					
24.2-25.0友色和主質和			\$ 16-1	7_0_12	24.2 M	<u></u>				SM	0.0	86.6	0 0	3 1	10 8	1 03		NID	NID	2.66	0.65
24.2-25.0灰色粉土質粘 1.2 22.4 18.8 2.74 0.84 1.2 2.8 1.95 1.2 2.4 18.8 2.74 0.84 1.95 1.2 2.4 18.8 2.74 0.84 1.95 1.2 2.4 1.8 1.9 1.2 1.8 1.9 1.2 1.8 1.9 1.2 1.8 1.9 1.2 1.8 1.9 1.2 1.8 1.9 1.2 1.8 1.9 1.2 1.8 1.9 1.2 1.8 1.9 1.2 1.8 1.9 1.2 1.8 1.9 1.2 1.8 1.9 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.9 1.9 1.8 1.9 1.9 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.	2	4	3-10-1	7 7 7 7 1 2						- SW		80.0	9.9		19.0	1.95	-	INI		2.00	0.05
S-17-1 6+8+9 生音細砂 25.45 M 25.					24.2~25.0灰色粉十質粘		-														
S.17-1 64849 Les auto 23.43 at 2.74 0.84 G. 0.0 9.0 66.3 24.8 30.8 1.95 41.2 22.4 18.8 2.74 0.84 B. 17-1 64849 Les auto 23.43 at 2.74 0.84 B. 18-1 64849 Les auto 23.43 at 2.74 B. 18-1 64849 Les auto 23.43 at 2				ļ		— —															
5			S-17-1	6+8+9	上 古 ※山					CL	0.0	9.0	66.3	24.8	30.8	1.95	41.2	22.4	18.8	2.74	0.84
32	⋤ ⊨ ,	e																			
28	⋜ === 2	9																			
2	બ્ર⊨																				
28 30 32 34 36 38 40	<u> </u>																				
2	二 第																				
30	3 戸 🤈	3																			
30	_ =	^																			
30	ກ 🗏																				
30																					
32																					
32 34 36 38 40	3)																			
32 34 36 38 40																					
32	=																				
32 = 34 = 36 = 38 = 40																					
34																					
34 	3	2																			
== 34 == 36 == 38 == 40	F																				
= 34 = 36 = 38 = 40																					
= 34 = 36 = 38 = 40																					
	\equiv	.																			
	<u> </u>	4																			
	= ,	_																			
	= 3	9																			
	=																				
	F 3	2																			
	F 3	'																			
	F																				
	_																				
	\equiv .	,																			
	4	J																			

工程名稱:彰化縣彰化市成功段630等地號地質鑽探及試驗分析工作

地點:光復路

日 期:1061016~1061123

鑽孔編號:BH-4

鑽孔標高:13.20 M

地下水位:3.50 M

專業技師:侯海樹

輸入人員:侯海樹

深 度:25.45 M

座標系統:TW97

座 標 N: 2664031.00

座 標 E: 203321.00

深度 (m)	鑽孔 水位	取樣記錄	標準貫入	岩石或土壤性質描述	地質 圖元	回收率 (%)	RQD 25 50 7	RQD(%)	統一土 壤分類 ()	礫 石 (%)	份(%)	粉 土 (%)	黏 土 (%)	含水 量 (%)	統體單 位重 (t/m^3)	液性 限度 (%)	塑性 限度 (%)	塑性 指數 (%)	比 重 ()	空隙 比 ()
		S-01-1	3+4+4	0.0~1.0地表水泥及回填 級配夾粘土、砂土	<u> </u>				CL	0.0	7.5	66.5	26.0	25.2	1.88	38.6	21.1	17.5	2.74	0.82
2		S-02-1	4+4+4	1.0~5.5棕灰色粉土質黏 土和細砂					CL	0.0	10.9	66.8	22.3	24.9	1.92	35.3	20.5	14.8	2.72	0.77
4	106/10/30				<u>*</u>															
		S-03-1	4+4+5	5.5 M					CL	0.0	8.6	66.3	25.1	24.3	1.91	37.2	21.0	16.2	2.73	0.77
H043财************************************				5.5~8.8灰色卵礫石夾租 中砂	, , ,															
T ※ ※ 8		S-05-0	21+50/3		, ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °															
7		S-06-0		8.8~12.1灰色礫石夾粗	200															
10		(S-07-0)		十 切	,°°°,															
2		S-08-0	11+50	12.1 M																
		S-09-1	5+6+8	12.1~13.8灰色粉土質中 細砂偶夾礫石 13.8 M	*				SM	0.0	77.4	16.7	6.0	22.0	1.96		NP	NP	2.67	0.66
14		S-10-1	4+5+7	13.8~20.1灰色粉土質粘 土含細砂					CL	0.0	21.2	57.4	21.4	31.4	1.93	39.2	23.2	16.0	2.71	0.85
16		S-11-1	4+5+7						CL	0.0	13.2	63.2	23.6	22.3	1.86	37.6	22.5	15.1	2.72	0.79
		S-12-1	5+6+7		<u> </u>				CL	0.0	7.2	67.6	25.3	30.3	1.85	38.4	21.6	16.8	2.74	0.92
18					<u>**</u>															
20		S-13-1	5+6+8	20.1 M					CL	0.0	18.2	59.6	22.2	30.3	1.89	37.9	22.5	15.4	2.71	0.87

工程名稱:彰化縣彰化市成功段630等地號地質鑽探及試驗分析工作

地點:光復路

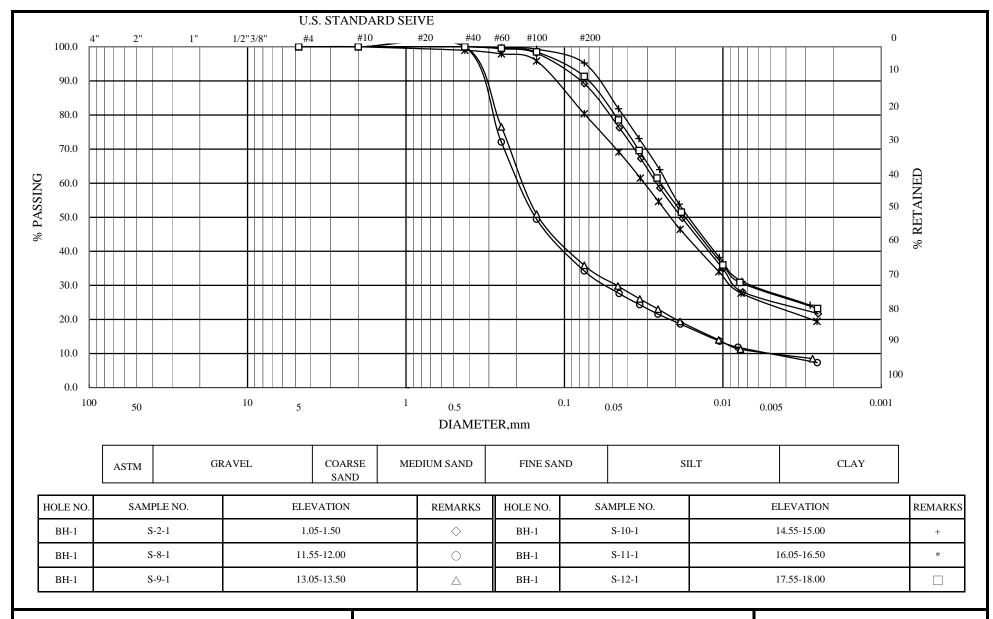
日 期:1061016~1061123

鑽孔編號:BH-4

鑽孔標高:13.20 M

地下水位:3.50 M 專業技師:侯海樹

輸入人員:侯海樹

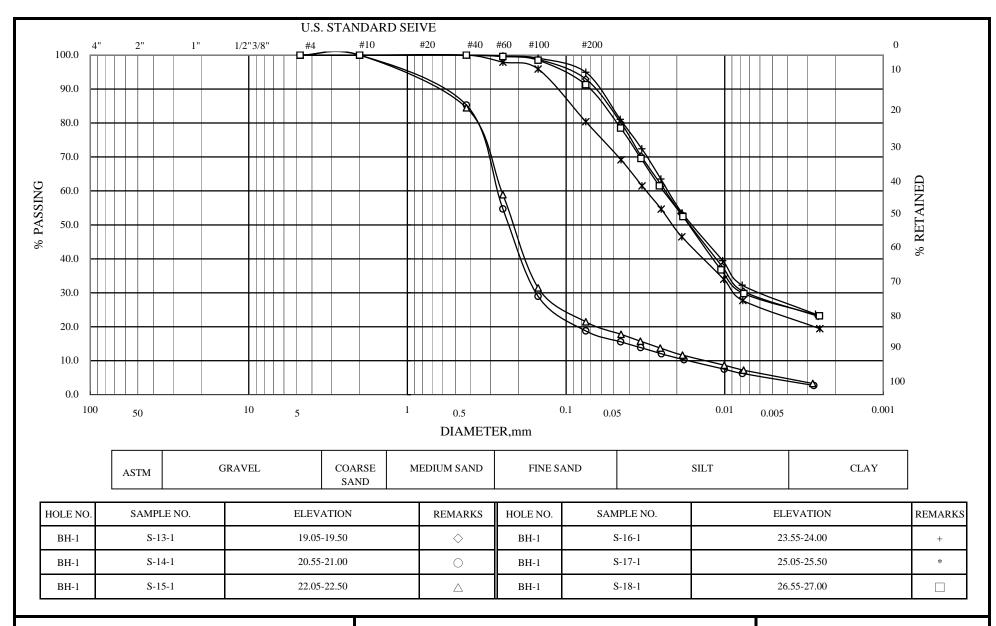

深 度:25.45 M

座標系統:TW97

座 標 N: 2664031.00 座 標 E: 203321.00

沫	خار	ž · 23.4.) IVI		坐標系統・IW9/		坐 19	示 N · Z(004031.00)	座	保 L・Ζ	.03321.00)	頭	休公可・	1友/机工作	王惟月1月17又1	万万队公	니	
		Adda		t-mr >4x		nt se				統一土	礫	砂	粉	黏	含水	統體單	液性	塑性	塑性	比	空隙
深月	度	鑽孔	取樣	標準	岩石或土壤性質描述	地質	回收率	RQD	RQD(%)		石		土	土	量	位重	限度	限度	指數	重	比
(m))	水位	記錄	貫入		圖元	(%)	25 50 75	TQD(N)	()	(%)	(%)	(%)	(%)	(%)	(t/m^3)	(%)	(%)	(%)	()	()
	- 20				12 0 00 1 左	/ ** - •	-	25 50 75		()	(10)	(10)	(10)	(10)	(10)	(0/111/3)	(10)	(10)	(10)	()	()
			\$ 11.1	7+8+11	13.8~20.1灰色粉土質粘 土含細砂 20.1/	(· · · · · ·	1			SM	0.0	66.6	24.5	8.9	16.2	1.99		NP	NP	2.67	0.56
			3-14-1	/+0+11	<u> </u>	νι <u></u>	1			SIVI	0.0	00.0	24.5	0.9	10.2	1.99		INF	INF	2.07	0.50
					20.1~24.6灰色粉土質中	· · · · ·	1														
	- 22		C 15 1	7+9+12	細砂		1			SM	0.0	87.2	9.5	3.3	20.5	1.94		NP	NP	2.66	0.65
=			3-13-1	7+9+12	-		.			SW	0.0	01.2	9.5		20.5	1.94		INF	INF	2.00	0.05
						— :	-														
			\$ 16.1	7+9+12	-	₩ .	-			SM	0.0	82.4	13.0	4.6	17.1	1.97		NP	- NP	2.66	0.58
	_ 24		3-10-1	177712	24.6	м .	1			- SIVI	0.0	02.4	13.0	4.0	17.1	1.77		IVI	- 141	2.00	0.56
E						**	<u>.</u>														
			S-17-1	5+7+9	24.6~25.0灰色粉土質粘 土含細砂 25.45		1			CL	0.0	10.0	65.5	24.5	30.1	1.93	38.9	22.6	16.3	2.73	0.84
ΙE			5 1, 1	1	土含細砂 25.45	yı — —						10.0	-00.0			11,75			10.5		
= 2	- 26																				
<u>₩</u>																					
- 1																					
80	20																				
	- 28																				
∞⊟																					
	30																				
	- 30																				
	32																				
	- 52																				
	3.4																				
	- 54																				
E																					
=	36																				
	- 50																				
E	30																				
	- 20																				
	40																				

附錄二 顆粒粒徑分佈曲線圖

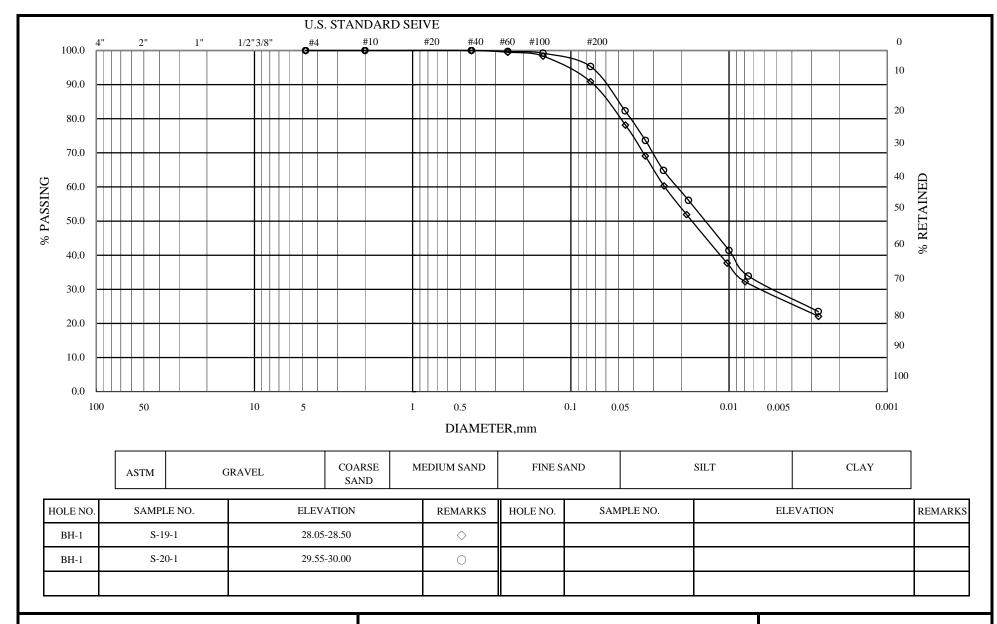


顆 粒 分 析 試 驗 GRAIN SIZE DISTRIBUTION TEST JOB NO: SP2017110602

TESTED BY: L.D.H.

SHEET NO: 1

of 3

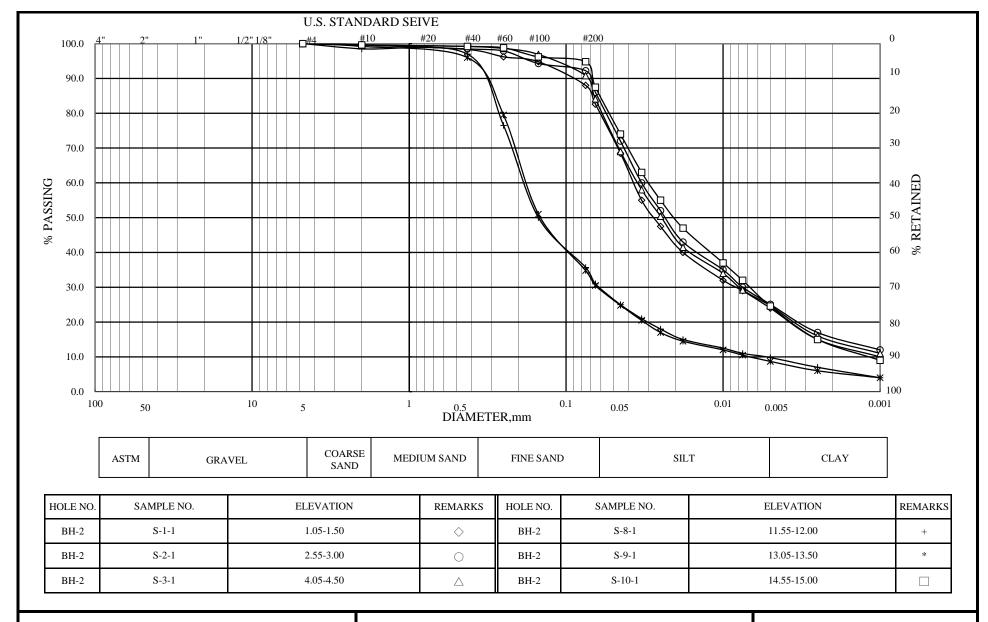


顆 粒 分 析 試 驗 GRAIN SIZE DISTRIBUTION TEST JOB NO: SP2017110602

TESTED BY: L.D.H.

SHEET NO: 2

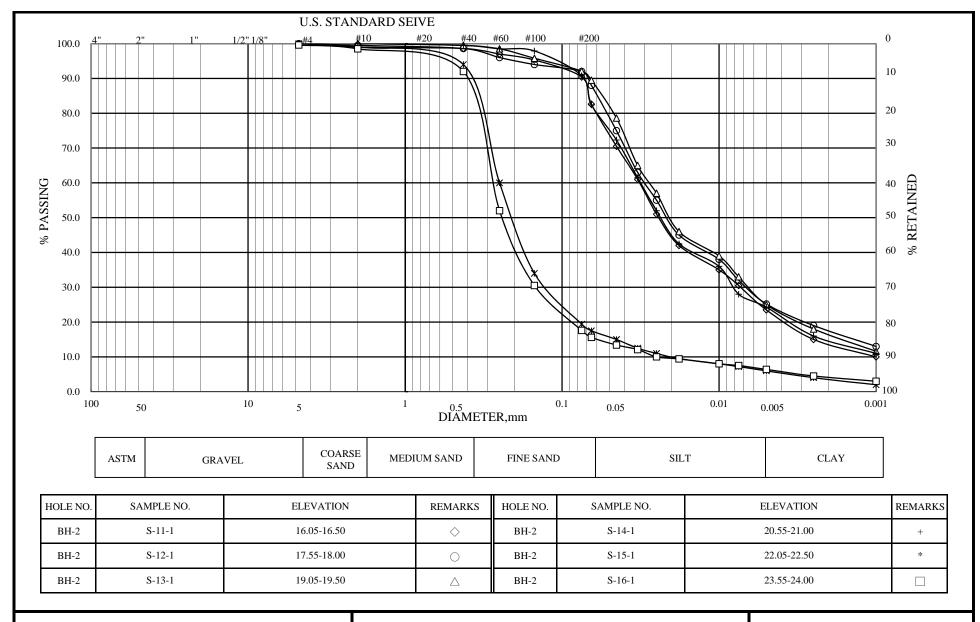
of 3



顆 粒 分 析 試 驗 GRAIN SIZE DISTRIBUTION TEST JOB NO: SP2017110602

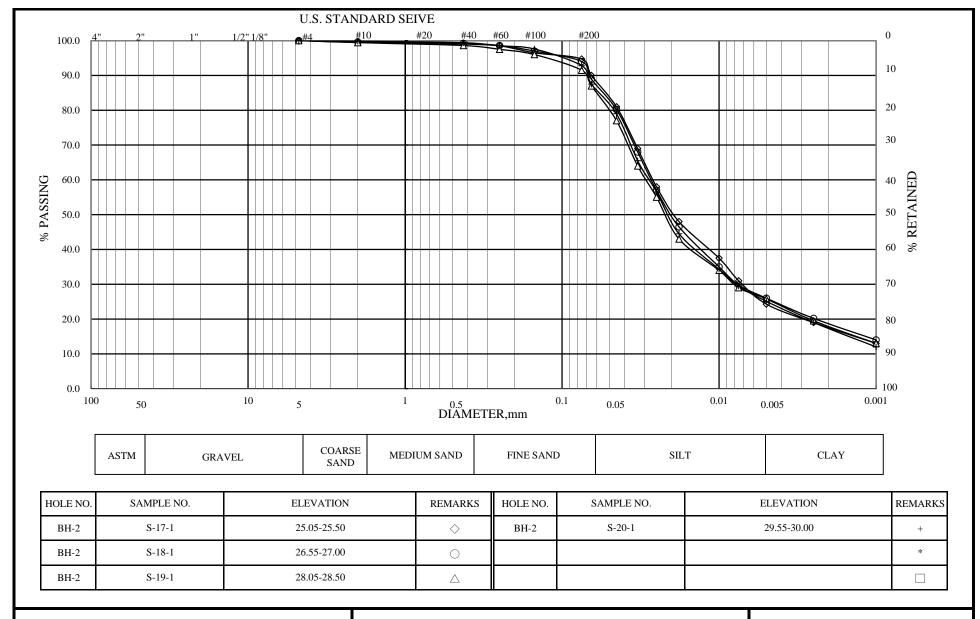
TESTED BY: L.D.H.

SHEET NO: 3


of 3

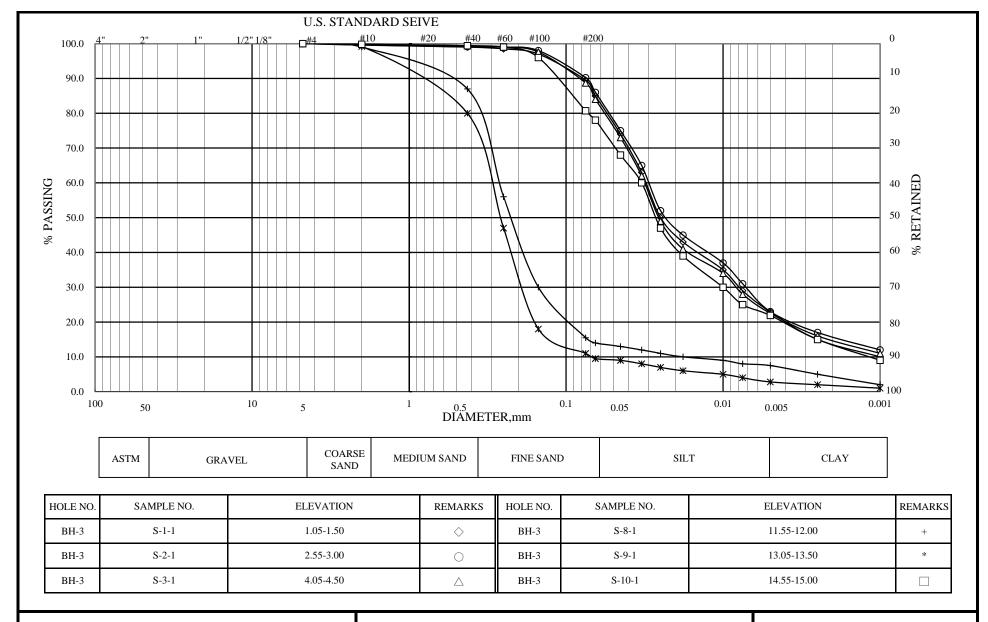
顆 粒 分 析 試 驗 GRAIN SIZE DISTRIBUTION TEST JOB NO: SP110602

TESTED BY: L.D.H.


SHEET NO: 1 of 3

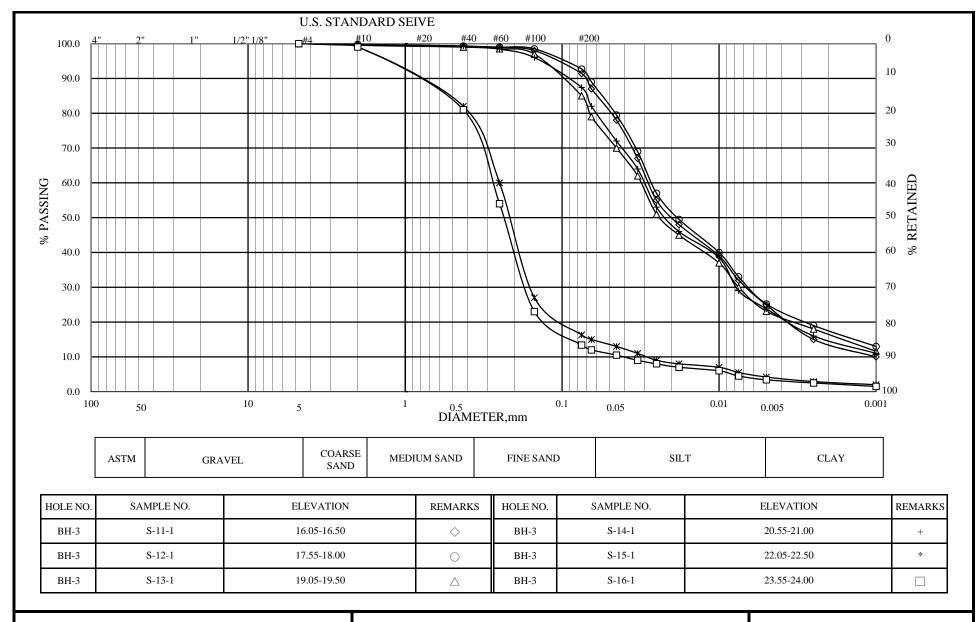
顆 粒 分 析 試 驗 GRAIN SIZE DISTRIBUTION TEST JOB NO: SP110602

TESTED BY: L.D.H.


SHEET NO: 2 of 3

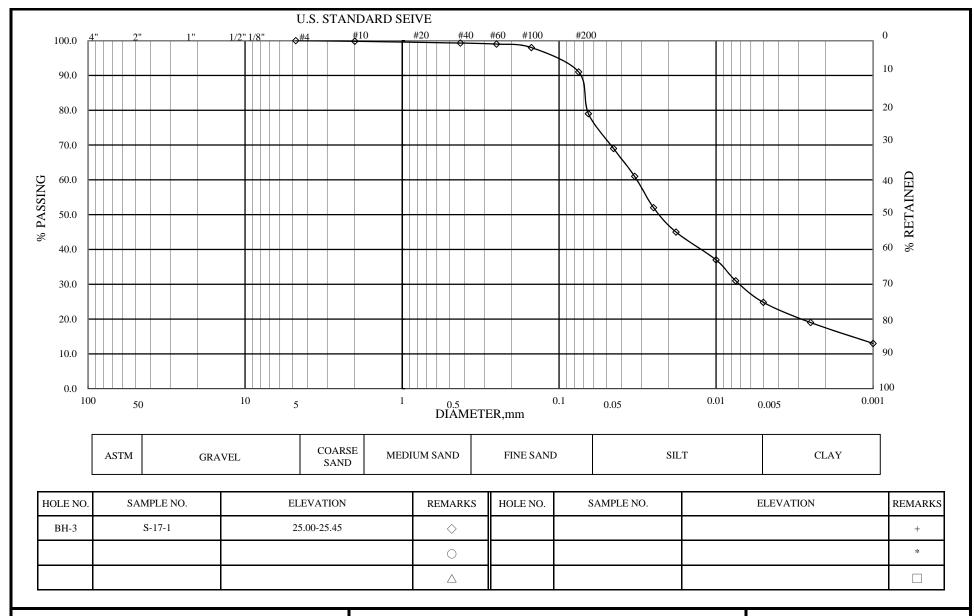
顆 粒 分 析 試 驗 GRAIN SIZE DISTRIBUTION TEST JOB NO: SP110602

TESTED BY: L.D.H.


SHEET NO: 3 of 3

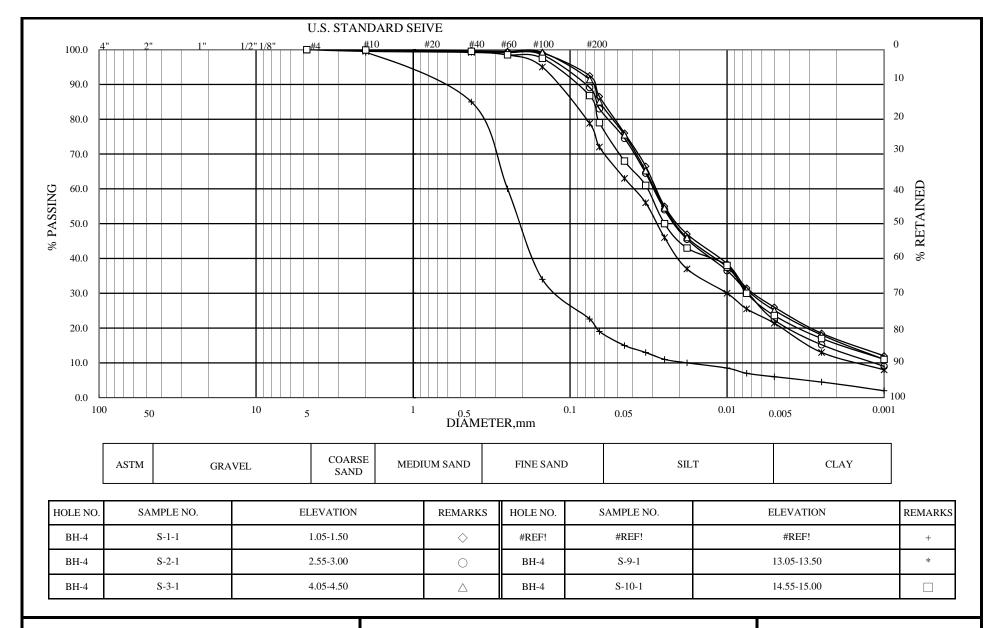
顆 粒 分 析 試 驗 GRAIN SIZE DISTRIBUTION TEST JOB NO: SP110602

TESTED BY: L.D.H.


SHEET NO: 1 of 3

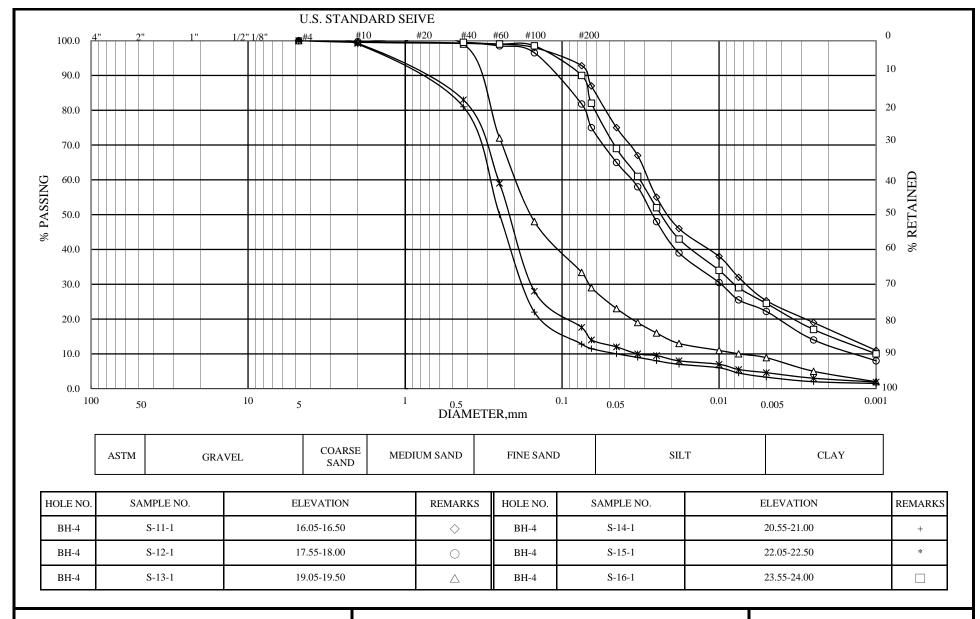
顆 粒 分 析 試 驗 GRAIN SIZE DISTRIBUTION TEST JOB NO: SP110602

TESTED BY: L.D.H.


SHEET NO: 2 of 3

顆 粒 分 析 試 驗 GRAIN SIZE DISTRIBUTION TEST JOB NO: SP110602

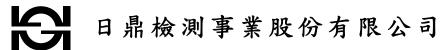
TESTED BY: L.D.H.


SHEET NO: 3 of 3

顆 粒 分 析 試 驗 GRAIN SIZE DISTRIBUTION TEST JOB NO: SP110602

TESTED BY: L.D.H.

SHEET NO: 1 of 3



顆 粒 分 析 試 驗 GRAIN SIZE DISTRIBUTION TEST JOB NO: SP110602

TESTED BY: L.D.H.

SHEET NO: 2 of 3

附錄三 直接剪力試驗

Zeal-Team Inspection & Surveying Career Corporation

日鼎地工實驗室 TEL: (03) 3137984

桃園市蘆竹區新生路 21 號 FAX: (03) 3137985

直剪試驗報告

收件編號: DS2017110602 第1頁; 共1頁

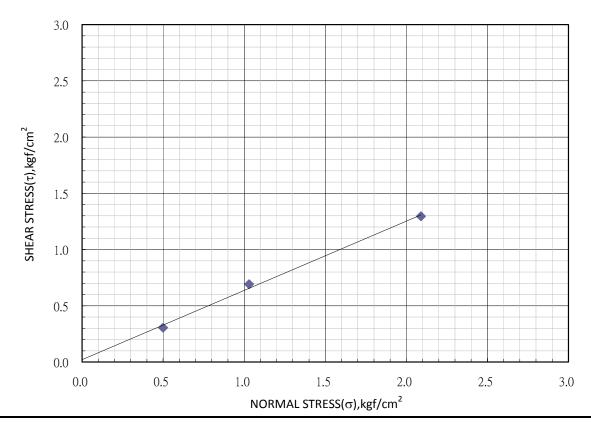
業主/委託單位:復統工程顧問股份有限公司

監造單位:—

工程名稱:彰化縣彰化市成功段 630 等地號地質鑽探及試驗分析工作

承包廠商:復統工程顧問股份有限公司 送件日期:106/11/06

取樣地點:BH-1(深度 12.10~13.00 m) 試驗日期:106/11/06~11/13


取樣者: 復統工程顧問股份有限公司 報告日期: 106/11/13

送樣者:復統工程顧問股份有限公司 引用規範: CNS 11778

測試結果

樣品編號	單位重 γ _t (t/m³)	含水量 w(%)	土壤分類	描述
T-2	1.98	23.6	SM	棕灰色中細砂
	<u>†</u>	1		

 $C(kgf/cm^2)$ 0.02 $\phi(^{\circ})$ 31.6

備註: 1.本試件由委託者自行取樣,所列記錄僅對樣品負責。

2.本報告不得塗改及摘錄複印。

附錄四 無圍壓縮試驗

日鼎檢測事業股份有限公司

Zeal-Team Inspection & Surveying Career Corporation

日鼎地工實驗室

桃園市蘆竹區新生路 21 號

TEL: (03) 3137984

FAX: (03) 3137985

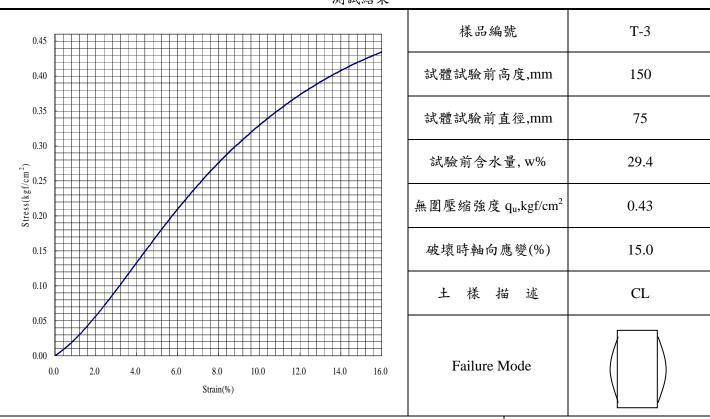
無圍壓縮強度試驗報告

收件編號: UC2017110602 第 1 頁; 共 1 頁

業主/委託單位:復統工程顧問股份有限公司

監造單位:-

工程名稱:彰化縣彰化市成功段 630 等地號地質鑽探及試驗分析工作


承包廠商:復統工程顧問股份有限公司 送件日期:106/11/11

取樣地點:BH-3(深度 21.10~22.00m) 試驗日期:106/11/11~11/17

取樣者: 復統工程顧問股份有限公司 報告日期: 106/11/17

送樣者: 復統工程顧問股份有限公司 引用規範: ASTM D2166

測試結果

會驗者:—

實驗室保留正本存查 1

份

附註: 1.本試件由委託者自行取樣,所列記錄僅對樣品負責。

2.試驗之變形速率: 1.33 %/min。

3.本試驗樣品為地質鑽探取樣之三吋薄管土樣。

附錄五 單向度壓密試驗

日鼎檢測事業股份有限公司

Zeal-Team Inspection & Surveying Career Corporation

日鼎地工實驗室 TEL: (03) 3137984

桃園市蘆竹區新生路 21 號 FAX: (03) 3137985

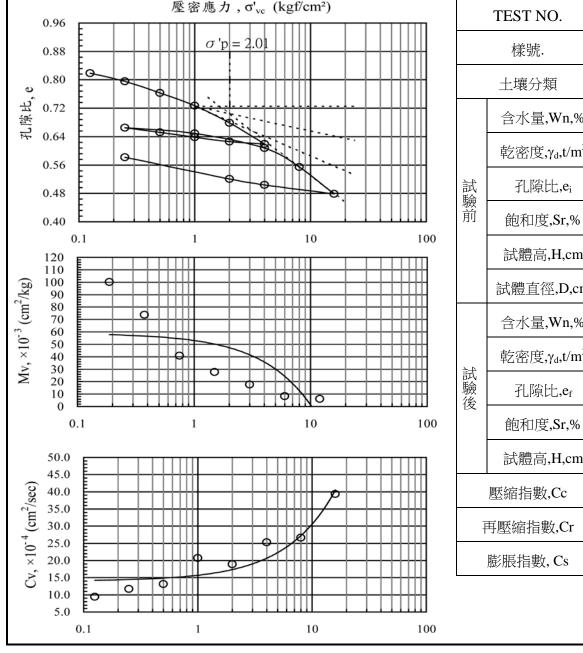
土壤壓密試驗報告

收件編號: CN2017110602 第 1 頁;共 2 頁

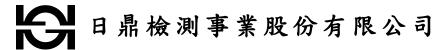
業主/委託單位:復統工程顧問股份有限公司

監造單位:-

工程名稱:彰化縣彰化市成功段630等地號地質鑽探及試驗分析工作


承包廠商:復統工程顧問股份有限公司 送件日期:106/11/06

取樣地點:BH-1(深度 3.10~4.00m) 試驗日期: 106/11/06~11/17


取樣者: 復統工程顧問股份有限公司 報告日期: 106/11/17

送樣者: 復統工程顧問股份有限公司 引用規範: ASTM D2435

測試結果

	TEST NO.	CON-1
	樣號.	T-1
	土壤分類	CL
	含水量,Wn,%	23.2
	乾密度,γ _d ,t/m³	1.47
試驗	孔隙比,e _i	0.85
驗前	飽和度,Sr,%	74.6
	試體高,H,cm	2.01
	試體直徑,D,cm	6.40
	含水量,Wn,%	21.4
<u>4.4</u>	乾密度,γ _d ,t/m³	1.72
試驗後	孔隙比,e _f	0.58
IX.	飽和度,Sr,%	100.0
	試體高,H,cm	1.72
	壓縮指數,Cc	0.251
Ī	再壓縮指數,Cr	0.047
	膨脹指數, Cs	0.039

Zeal-Team Inspection & Surveying Career Corporation

日鼎地工實驗室 TEL: (03) 3137984

桃園市蘆竹區新生路 21 號 FAX: (03) 3137985

土壤壓密試驗報告

收件編號: CN2017110602 第 2 頁; 共 2 頁

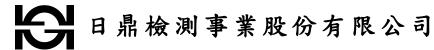
業主/委託單位:復統工程顧問股份有限公司

監造單位:-

工程名稱:彰化縣彰化市成功段 630 等地號地質鑽探及試驗分析工作

承包廠商:復統工程顧問股份有限公司 送件日期:106/11/06

取樣地點:BH-3(深度 15.0~15.8m) 試驗日期: 106/11/06~11/17


取樣者:復統工程顧問股份有限公司 報告日期:106/11/17

送樣者:復統工程顧問股份有限公司 引用規範:ASTM D2435

測試結果

附錄六 三軸壓縮CIU試驗

Zeal-Team Inspection & Surveying Career Corporation

日鼎地工實驗室 TEL: (03) 3137984

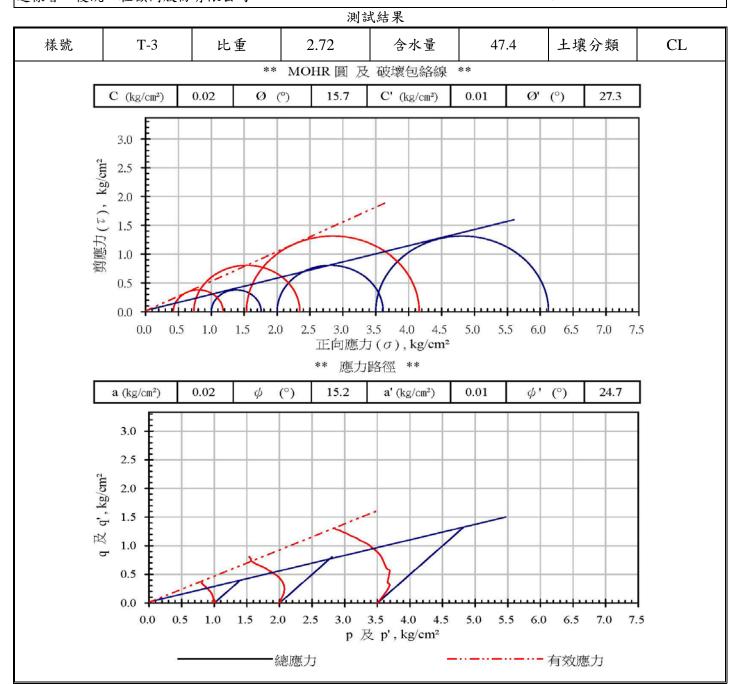
桃園市蘆竹區新生路 21 號 FAX: (03) 3137985

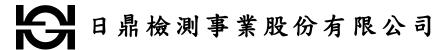
土壤三軸(CIU)壓縮強度試驗報告

收件編號: CU2017110602 第 1 頁;共 2 頁

業主/委託單位:復統工程顧問股份有限公司

監造單位:-


工程名稱:彰化縣彰化市成功段 630 等地號地質鑽探及試驗分析工作


承包廠商:復統工程顧問股份有限公司 送件日期:106/11/06

取樣地點:BH-1(深度 15.20~16.00m) 試驗日期:106/11/08~11/17

取樣者: 復統工程顧問股份有限公司 報告日期: 106/11/17

送樣者: 復統工程顧問股份有限公司 引用規範: ASTM D4767

Zeal-Team Inspection & Surveying Career Corporation

日鼎地工實驗室 TEL: (03) 3137984

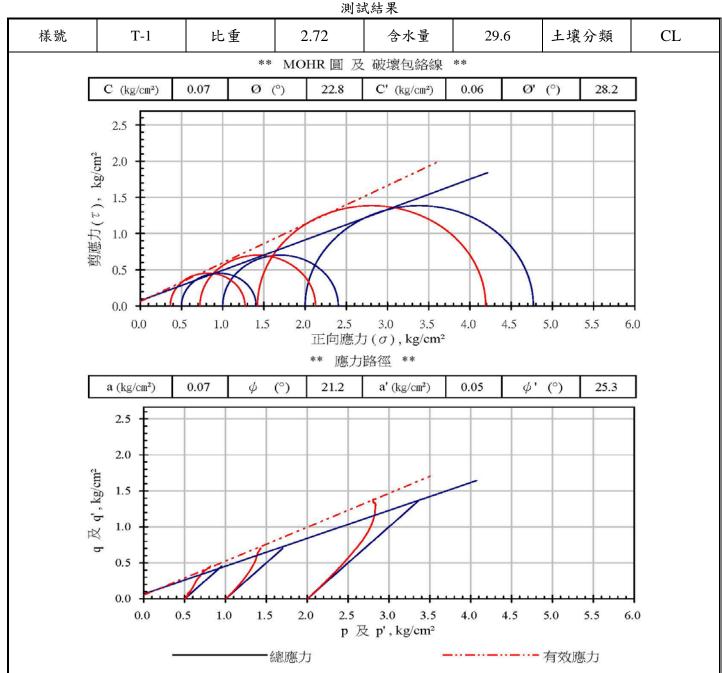
FAX: (03) 3137985 桃園市蘆竹區新生路 21 號

土壤三軸(CIU)壓縮強度試驗報告

收件編號: CU2017110602 第2頁;共2頁

業主/委託單位:復統工程顧問股份有限公司

監造單位:-


工程名稱:彰化縣彰化市成功段 630 等地號地質鑽探及試驗分析工作

送件日期:106/11/06 承包廠商:復統工程顧問股份有限公司

試驗日期:106/11/08~11/17 取樣地點:BH-3(深度 1.50~2.40m)

報告日期: 106/11/17 取樣者:復統工程顧問股份有限公司

引用規範: ASTM D4767 送樣者:復統工程顧問股份有限公司

附錄七 現場作業照片

附錄八 開挖面穩定分析

設計資訊

▼計畫名稱:H043D1170L2350Q5

▼計畫編號: H043-1080819 ▼設計人員: hou1080819

▼設計說明:

開挖深度11.4m,超載力5.0t/m2,擋土長度23.5m

CATii 程式開發:大也工程顧問股份有限公司

符號	虎說明
A_s	鋼筋量(cm²)
$A_{s,\text{max}}$	最大鋼筋量(cm²)
$\boldsymbol{A}_{s,min}$	最小鋼筋量(cm²)
$A_{\rm v}$	剪力筋鋼筋量(cm²)
$A_{v,\text{min}}$	最小剪力筋鋼筋量(cm²)
\mathbf{b}_{f}	型鋼寬度(cm)
c'	有效凝聚力(tf/m²)
C_{1a}	擋土側積分簡化析法之參數C1(tf/n
C_{1p}	開挖側積分簡化析法之參數 $C_1(tf/n)$
C_{2a}	擋土側積分簡化析法之參數 $C_2(tf/n)$
C_{2p}	開挖側積分簡化析法之參數 $C_2(tf/n)$
C_{3a}	擋土側積分簡化析法之參數C3(tf/n
C_{3p}	開挖側積分簡化析法之參數C3(tf/n
C_{4a}	擋土側積分簡化析法之參數C4(tf/n
C_{4p}	開挖側積分簡化析法之參數C4(tf/n
c_c	鋼筋保護層厚度(cm)
$c_{\rm w}$	牆/土粘滯力(總應力法)(tf/m²)
c_w'	牆/土粘滯力(有效應力法)(tf/m²)
D	排水地層
D	圓柱直徑(cm)
d	鋼軌深度(cm)
d	型鋼深度(cm)
ď'	主筋中心至斷面邊距(cm)
\mathbf{D}_1	地層頂部深度(m)

*,	N 1 23/3/1/18 1/1/3 == ()
$b_{\rm f}$	型鋼寬度(cm)
c'	有效凝聚力(tf/m²)
C_{1a}	擋土側積分簡化析法之參數 $C_1(tf/m)$
C_{1p}	開挖側積分簡化析法之參數 $C_1(tf/m)$
C_{2a}	擋土側積分簡化析法之參數 $C_2(tf/m)$
C_{2p}	開挖側積分簡化析法之參數 $C_2(tf/m)$
C_{3a}	擋土側積分簡化析法之參數 $C_3(tf/m)$
C_{3p}	開挖側積分簡化析法之參數 $C_3(tf/m)$
C_{4a}	擋土側積分簡化析法之參數C4(tf/m)
C_{4p}	開挖側積分簡化析法之參數 $C_4(tf/m)$
c_c	鋼筋保護層厚度(cm)
$c_{\rm w}$	牆/土粘滯力(總應力法)(tf/m²)
$c_{\rm w}$	牆/土粘滯力(有效應力法)(tf/m²)
D	排水地層
D	圓柱直徑(cm)
d	鋼軌深度(cm)
d	型鋼深度(cm)
d'	主筋中心至斷面邊距(cm)
\mathbf{D}_1	地層頂部深度(m)
D_2	地層底部深度(m)
D_{e}	開挖深度(m)
D_L	擋土壁長度(m)
\mathbf{D}_{q}	地表超載深度(m)
D_{rot}	旋轉點深度(m)
D_{S}	最下階支撐深度(m)
f_b	撓曲應力(kgf/cm²)
F_b	容許撓曲應力(kgf/cm²)
f _c '	混凝土抗壓強度(kgf/cm²)
FS_h	塑性隆起安全係數
$FS_{h,r}$	塑性隆起安全係數需求值
FS_s	側向力平衡安全係數
$FS_{s,r}$	側向力平衡安全係數需求值
f_v	剪應力(kgf/cm²)
$F_{\mathbf{v}}$	容許剪應力(kgf/cm²)
f_y	鋼筋強度(kgf/cm²)
Н	水平向滲流

	Kpch	$[K_{ph}(1+c_w'/c')]^{0.5}$ or $[K_{ph}(1+c_w/S_u)]^{0.5}$
	•	水平向被動(或開挖側)土壓力係數
	La	擋土側土壓合力與最下階支撐(或旋轉點)距離(m)
	L_{c}	趨動土塊重量之力臂(m)
	L_p	開挖側土壓合力與最下階支撐(或旋轉點)距離(m)
	L_{qh}	壁體側向受力合力與最下階支撐(或旋轉點)距離(m)
	$L_{q v}$	地表超載合力與開挖面距離(m)
m)	$L_{\rm w}$	淨水壓合力與最下階支撐(或旋轉點)距離(m)
m)	M_{a}	擋土側土壓力造成之彎矩(tf-m)
m)	$M_{\rm c}$	趨動土塊重量造成之力矩(tf-m)
m)	M_{max}	淨土壓力造成之擋土壁彎矩(tf-m/m)
m)	M_{p}	開挖側土壓力造成之彎矩(tf-m)
m)	$M_{qh} \\$	壁體側向受力造成之彎矩(tf-m)
m)	$M_{qv} \\$	地表超載造成之彎矩(tf-m)
m)	M_{s}	壁體容許彎矩(tf-m)
	$M_{\rm u}$	係數化彎矩(tf-m)
	M_{ux}	水平x向係數化彎矩(tf-m)
	M_{uy}	水平y向係數化彎矩(tf-m)
	$M_{\rm w}$	水壓力造成之彎矩(tf-m)
	M_x	輸入水平x向彎矩(tf-m)
	M_y	輸入水平y向彎矩(tf-m)
		擋土側土壓力之合力(tf)
		開挖側土壓力之合力(tf)
	•	超載引致側向力之合力(tf)
	1	地表超載合力(tf)
		係數化載重(tf)
		垂直z向係數化載重(tf)
		淨水壓力之合力(tf)
	_	輸入垂直z向載重(tf)
		壁體側向受力(tf/m²)
		地表超載(tf/m²)
		椿心間距(m) 最大鋼筋間距(cm)
		最小鋼筋間距(cm)
		主筋淨間距(cm)
		最大主筋淨間距(cm)
	S _{n,max}	地層頂部不排水剪力強度(t/m²)
	uı	地層底部不排水剪力強度(t/m²)
		地層低部个排水剪刀强度(VIII) 斷面模數(cm³)
		單位寬度斷面模數(cm³/m)
	t	鋼板樁厚度(cm)
	·	料 1人 1日 (アルメ (V m.)

.5	V_{ux}	水平x向係數化剪力(tf)
妁	V _{uy}	水平y向係數化剪力(tf)
m)	V_{x}	輸入水平x向載重(tf)
	V_{v}	輸入水平y向載重(tf)
m)	W	鋼板樁寬度(cm)
m)	W	塑性隆起分析之趨動土塊重量(t/m)
	\mathbf{x}_1	地表超載起始距離(m)
m)	\mathbf{x}_2	地表超載結束距離(m)
	α	短期容許應力提高因數
	$\gamma_{t} \\$	土壤單位重(tf/m³)
n)	$\delta_{\boldsymbol{a}}$	主動(或擋土側)牆背摩擦角(deg.)
	$\delta_{\boldsymbol{p}}$	被動(或開挖側)牆背摩擦角(deg.)
	$\boldsymbol{\theta}_1$	地層頂部之破壞弧角度(deg.)
	θ_2	地層底部之破壞弧角度(deg.)
	$\sigma_{a1} \\$	地層頂部之擋土側土壓力(tf/m²)
	$\sigma_{a2} \\$	地層底部之擋土側土壓力(tf/m²)
	σ_{h}	側向淨土壓力(tf/m²)
	$\sigma_{ia1} \\$	擋土側地層頂部之滲流壓力(tf/m²)
	σ_{ia2}	擋土側地層底部之滲流壓力(tf/m²)
	σ_{ip1}	開挖側地層頂部之滲流壓力(tf/m²)
	σ_{ip2}	開挖側地層底部之滲流壓力(tf/m²)
	σ_{p1}	地層頂部之開挖側土壓力(tf/m²)
	σ_{p2}	地層底部之開挖側土壓力(tf/m²)
	σ_{qa1}	擋土側地層頂部超載造成之側向應力(tf/m²)
	σ_{qa2}	擋土側地層底部超載造成之側向應力(tf/m²)
	σ_{qn1}	地層頂部之超載淨側向應力(tf/m²)
	σ_{qn2}	地層底部之超載淨側向應力(tf/m²)
	σ_{qp1}	開挖側地層頂部超載造成之側向應力(tf/m²) 開挖側地層底部超載造成之側向應力(tf/m²)
	σ_{qp2} σ_{va1}	描土側地層頂部之垂直向總應力(tf/m²)
	$\sigma_{\rm val}$	描土側地層頂部之垂直向有效應力(tf/m²)
	σ_{va2}	描土側地層底部之垂直向總應力(tf/m²)
	σ_{va2}	描土側地層底部之垂直向有效應力(tf/m²)
	σ_{vp1}	開挖側地層頂部之垂直向總應力(tf/m²)
	$\sigma_{\rm vp1}$	開挖側地層頂部之垂直向有效應力(tf/m²)
	σ_{vp2}	開挖側地層底部之垂直向總應力(tf/m²)
	$\sigma_{\rm vp2}$ '	開挖側地層底部之垂直向有效應力(tf/m²)
	σ_{wa1}	擋土側地層頂部未考慮滲流之水壓(tf/m²)
	σ_{wa2}	擋土側地層底部未考慮滲流之水壓(tf/m²)
	σ_{wan1}	擋土側地層頂部之水壓力(tf/m²)
		擋土側地層底部之水壓力(tf/m²)

Η	鋼板椿深度(cm)	١

I_{Ia} 擋土側積分簡化析法之參數I_I(m)

 I_{ln} 開挖側積分簡化析法之參數 $I_{l}(m)$

 I_{2a} 擋土側積分簡化析法之參數 $I_2(m)$

 I_{2p} 開挖側積分簡化析法之參數 $I_2(m)$

I_{3a} 擋土側積分簡化析法之參數I₃(m)

I_{3p} 開挖側積分簡化析法之參數I₃(m)

I4a 擋土側積分簡化析法之參數I4(m)

I_{4p} 開挖側積分簡化析法之參數I₄(m)

 $K_{ach} [K_{ah}(1+c_w'/c')]^{0.5}$ or $[K_{ah}(1+c_w/S_u)]^{0.5}$

K_{ah} 水平分量主動(或擋土側)土壓力係數

K。 靜止土壓力係數

t 鋼軌腹板厚度(cm)

t_f 型鋼翼板厚度(cm)

tw 型鋼腹板厚度(cm)

U 不排水地層

V 垂直向滲流

Va 擋土側潛在破壞面上之抗剪力(tf)

V。 x向混凝土抗剪力(tf)

V_{max} 淨土壓力造成之擋土壁剪力(tf/m)

V_n x向標稱剪力強度(tf)

V_p 開挖側潛在破壞面上之抗剪力(tf)

V_s x向剪力筋提供抗剪力(tf)

V_u 係數化剪力(tf)

 σ_{wn1} 地層頂部之兩側淨水壓力(tf/m^2)

σwn2 地層底部之兩側淨水壓力(tf/m²)

σwpl 開挖側地層頂部未考慮滲流之水壓(tf/m²)

σwp2 開挖側地層底部未考慮滲流之水壓(tf/m²)

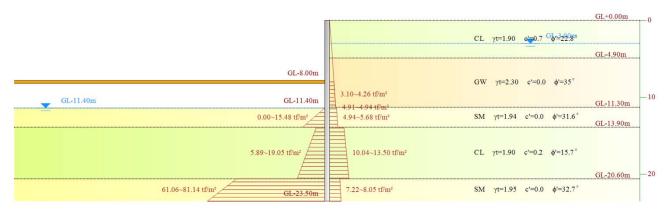
σwpn1 開挖側地層頂部之水壓力(tf/m²)

σwpn2 開挖側地層底部之水壓力(tf/m²)

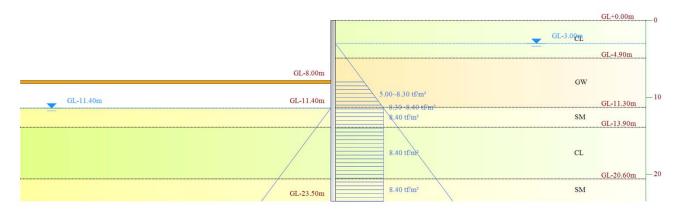
 au_{al} 擋土側地層頂部破壞面上之抗剪應力 (tf/m^2)

 au_{a2} 擋土側地層底部破壞面上之抗剪應力 (tf/m^2)

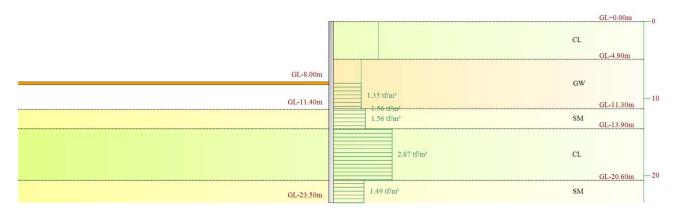
 au_{pl} 開挖側地層頂部破壞面上之抗剪應力 (tf/m^2)


Tp2 開挖側地層底部破壞面上之抗剪應力(tf/m²)

)' 有效摩擦角(deg.)


CATii 程式開發:大也工程顧問股份有限公司

側向力平衡分析示意圖


▼側向土壓力分布

▼水壓力分布

▼擋土壁側向力分布

側向力平衡分析

▼擋土側主動土壓力計算

地層 地層	D_1	D_2	排水	$\gamma_{t} \\$	c'	φ'	S_{u1}	S_{u2}	K_{ah}	K_{ach}	σ_{va1}	σ_{va2}	$\sigma_{va1}{}^{\prime}$	$\sigma_{va2}{}^{\prime}$	$\sigma_{a1} \\$	$\sigma_{a2} \\$	Pa	L_{a}	M_a
編號 代號	(m)	(m)	類型	(tf/m ³)	(tf/m ²)	(deg.)	(tf/m ²)	(tf/m ²)			(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf)	(m)	(tf-m)

1	CL	0.00	3.00	D	1.90	0.70	22.80	-	-	0.441	0.858	0.00	5.70	0.00	5.70	-	-	-	-	-
1	CL	3.00	4.90	D	1.90	0.70	22.80	-	-	0.441	0.858	5.70	9.31	5.70	7.41	-	-	-	-	-
2	GW	4.90	8.00	D	2.30	0.00	35.00	-	-	0.271	0.521	9.31	16.44	7.41	11.44	-	-	-	-	-
2	GW	8.00 1	1.30	D	2.30	0.00	35.00	-	-	0.271	0.521	16.44	24.03	11.44	15.73	3.10	4.26	12.15	1.74	21.10
3	SM	11.30 1	1.40	D	1.94	0.00	31.60	-	-	0.312	0.559	24.03	24.22	15.73	15.82	4.91	4.94	0.49	3.35	1.65
3	SM	11.40 1	3.90	D	1.94	0.00	31.60	-	-	0.312	0.559	24.22	29.07	15.82	18.17	4.94	5.68	13.27	4.68	62.11
4	CL	13.90 2	20.60	D	1.90	0.20	15.70	-	-	0.574	0.978	29.07	41.80	18.17	24.20	10.04	13.50	78.88	9.41	742.55
5	SM	20.60 2	23.50	D	1.95	0.00	32.70	-	-	0.298	0.546	41.80	47.46	24.20	26.96	7.22	8.05	22.14	14.08	311.71

 $\Sigma M_a = 1139.11$

▼開挖側被動土壓力計算

地層	地層	D_1	D_2	排水	$\gamma_{\rm t}$	c'	φ'	S_{u1}	S_{u2}	K_{ph}	K_{pch}	σ_{vp1}	σ_{vp2}	$\sigma_{vp1}{}^{\prime}$	σ_{vp2} '	σ_{p1}	σ_{p2}	P_p	L_p	M_p
編號	代號	(m)	(m)	類型	(tf/m ³)	(tf/m ²)	(deg.)	(tf/m ²)	(tf/m ²)			(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf)	(m)	(tf-m)
1	CL	0.00	3.00	D	1.90	0.70	22.80	-	-	3.362	2.367	-	-	-	-	-	-	-	-	-
1	CL	3.00	4.90	D	1.90	0.70	22.80	-	-	3.362	2.367	-	-	-	-	-	-	-	-	-
2	GW	4.90	8.00	D	2.30	0.00	35.00	-	-	9.147	3.024	-	-	-	-	-	-	-	-	-
2	GW	8.00	11.30	D	2.30	0.00	35.00	-	-	9.147	3.024	-	-	-	-	-	-	-	-	-
3	SM	11.30	11.40	D	1.94	0.00	31.60	-	-	6.589	2.567	-	-	-	-	-	-	-	-	-
3	SM	11.40	13.90	D	1.94	0.00	31.60	-	-	6.589	2.567	0.00	4.85	0.00	2.35	0.00	15.48	19.35	5.07	98.06
4	CL	13.90	20.60	D	1.90	0.20	15.70	-	-	2.182	1.907	4.85	17.58	2.35	8.38	5.89	19.05	83.56	9.84	822.17
5	SM	20.60	23.50	D	1.95	0.00	32.70	-	-	7.286	2.699	17.58	23.24	8.38	11.14	61.06	81.14	206.18	14.12	2910.95

 $\Sigma M_p = 3831.19$

▼水壓力計算

D_1	D_2	排水	滲流	σ_{wa1}	σ_{wa2}	σ_{ia1}	$\sigma_{ia2} \\$	$\sigma_{\text{wan}1}$	σ_{wan2}	$\sigma_{wp1} \\$	σ_{wp2}	$\sigma_{ip1} \\$	$\sigma_{ip2} \\$	σ_{wpn1}	σ_{wpn2}	σ_{wn1}	σ_{wn2}	$P_{\rm w}$	$L_{\mathbf{w}}$	$M_{\rm w}$
(m)	(m)	類型	方式	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf)	(m)	(tf-m)
0.00	3.00	D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3.00	4.90	D	-	0.00	1.90	-	-	0.00	1.90	-	-	-	-	-	-	-	-	-	-	-
4.90	8.00	D	-	1.90	5.00	-	-	1.90	5.00	-	-	-	-	-	-	-	-	-	-	-
8.00	11.30	D	-	5.00	8.30	-	-	5.00	8.30	-	-	-	-	-	-	5.00	8.30	21.95	1.79	39.20
11.30	11.40	D	-	8.30	8.40	-	-	8.30	8.40	-	-	-	-	-	-	8.30	8.40	0.83	3.35	2.80
11.40	13.90	D	-	8.40	10.90	-	-	8.40	10.90	0.00	2.50	-	-	0.00	2.50	8.40	8.40	21.00	4.65	97.65
13.90	20.60	D	-	10.90	17.60	-	-	10.90	17.60	2.50	9.20	-	-	2.50	9.20	8.40	8.40	56.28	9.25	520.59
20.60	23.50	D	-	17.60	20.50	- ا	-	17.60	20.50	9.20	12.10	-	-	9.20	12.10	8.40	8.40	24.36	14.05	342.26

 $\Sigma M_{\rm w} = 1002.50$

▼超載引起之擋土壁側向力計算

$D_{qh1} \\$	$D_{qh2} \\$	σ_{qa1}	σ_{qa2}	σ_{qp1}	σ_{qp2}	σ_{qn1}	σ_{qn2}	$P_{qh} \\$	$L_{qh} \\$	$M_{qh} \\$
(m)	(m)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf/m ²)	(tf)	(m)	(tf-m)
0.00	3.00	2.21	2.21	-	-	-	-	-	-	-
3.00	4.90	2.21	2.21	-	-	-	-	-	-	-
4.90	8.00	1.35	1.35	-	-	-	-	-	-	-
8.00	11.30	1.35	1.35	-	-	1.35	1.35	4.47	1.65	7.38
11.30	11.40	1.56	1.56	-	-	1.56	1.56	0.16	3.35	0.52
11.40	13.90	1.56	1.56	-	-	1.56	1.56	3.90	4.65	18.16
13.90	20.60	2.87	2.87	-	-	2.87	2.87	19.23	9.25	177.89

20.60 23.50 1.49 1.49 - 1.49 1.49 4.33 14.05 60.81

 $\Sigma M_{ab} = 264.75$

▼側向力平衡檢核

$$FS_s = (\Sigma M_p + M_s)/(\Sigma M_a + \Sigma M_w + \Sigma M_{qh}) = 1.59$$

$$FS_{s,r} = 1.5$$

$$FS_s \ge FS_{sr} \dots OK!$$

▼分析計算說明

▼計算單位

以上分析所稱之力量、彎矩,係指每單位寬度(1m)之力量、彎矩

▼基本分析條件

$$D_s = 8(m)$$
, $D_e = 11.4(m)$, $D_L = 23.5(m)$, $M_s = 0(tf-m)$

▼土壓力計算

粘土、砂土皆以有效應力法計算

主動土壓力係數採用 Rankine;被動土壓力係數採用 Coulomb, $\delta_p = 2/3\phi$ 1

牆/土粘滯力採用 $c_w' = 2/3c'$ 或 $c_w = 2/3S_u$

土壤有效應力之計算方式為土壤總應力扣除滲流後之水壓, σ_{va} ' = σ_{va} - σ_{wan} , σ_{vp} ' = σ_{vp} - σ_{wpn}

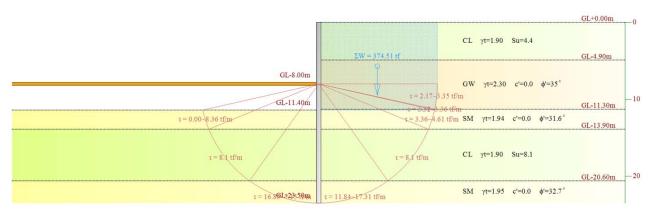
主動土壓力 $\sigma_a = \sigma_{va}' \times K_{ah} - 2 \times c \times K_{ach}^{1/2}$,被動土壓力 $\sigma_p = \sigma_{vp}' \times K_{ph} + 2 \times c \times K_{pch}^{1/2}$

土壓力係數 K_{ah} 、 K_{ph} 為 K_a 、 K_p 之水平向分量 , K_{ah} = K_a × $cos\delta_a$, K_{ph} = K_p × $cos\delta_p$,採 Rankine 土壓力係數時 δ = 0

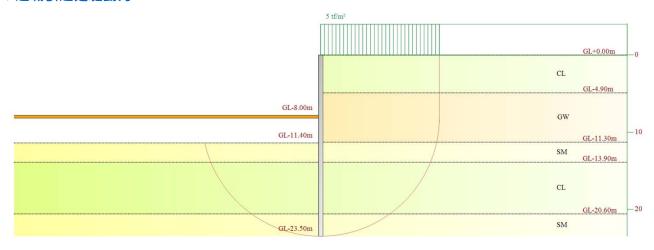
▼水壓力計算

土壤滲流後之水壓, $\sigma_{wan} = \sigma_{wa} - \sigma_{ia}$, $\sigma_{wpn} = \sigma_{wp} - \sigma_{ip}$

擋土壁兩側淨水壓, $\sigma_{wn} = \sigma_{wa} - \sigma_{wp}$


▼擋土壁體側向受力

擋土壁體側向受力係以地表超載及 Ka 計算


CATii 程式開發:大也工程顧問股份有限公司

塑性隆起分析示意圖

▼潛在破壞面抗剪力及驅動土塊

▼超載引起之驅動力

塑性隆起分析

▼擋土側潛在破壞面抗剪力計算

地層	地層	D_1	D_2	排水	$\gamma_{\rm t}$	c'	φ'	S_{u1}	S_{u2}	θ_1	θ_2	σ_{va1}	σ_{va2}	σ_{val} '	σ_{va2} '
編號	代號	(m)	(m)	類型	(tf/m^3)	(tf/m^2)	(deg.)	(tf/m^2)	(tf/m^2)	(deg.)	(deg.)	(tf/m^2)	(tf/m^2)	(tf/m^2)	(tf/m^2)
1	CL	0.00	3.00	U	1.90	-	-	4.40	4.40	-	-	0.00	5.70	0.00	5.70
1	CL	3.00	4.90	U	1.90	-	-	4.40	4.40	-	-	5.70	9.31	5.70	7.41
2	GW	4.90	8.00	D	2.30	0.00	35.00	-	-	-	-	9.31	16.44	7.41	11.44
2	GW	8.00	11.30	D	2.30	0.00	35.00	-	-	0.00	12.29	16.44	24.03	11.44	15.73
3	SM	11.30	11.40	D	1.94	0.00	31.60	-	-	12.29	12.67	24.03	24.22	15.73	15.82
3	SM	11.40	13.90	D	1.94	0.00	31.60	-	-	12.67	22.37	24.22	29.07	15.82	18.17
4	CL	13.90	20.60	U	1.90	-	-	8.10	8.10	22.37	54.38	29.07	41.80	18.17	24.20
5	SM	20.60	23.50	D	1.95	0.00	32.70	-	-	54.38	90.00	41.80	47.46	24.20	26.96
地層	地層	D_1	D_2	排水	C_{1a}	C_{2a}	C_{3a}	C_{4a}	I_{1a}	I_{2a}	I_{3a}	I_{4a}	τ_{a1}	τ_{a2}	Va
編號	代號	(m)	(m)	類型	(tf/m)	(tf/m)	(tf/m)	(tf/m)	(m)	(m)	(m)	(m)	(tf/m)	(tf/m)	(tf)
1	CL	0.00	3.00	U	_	-	-	_	_	-	-	_	-	-	_

1	CL	3.00	4.90	U	_	-	_	_	-	-	-	_	_	-	-
2	GW	4.90	8.00	D	-	-	-	-	-	-	-	-	-	-	-
2	GW	8.00	11.30	D	5.09	8.97	-2.92	-5.14	3.33	0.36	3.22	0.34	2.17	3.35	8.96
3	SM	11.30	11.40	D	5.10	5.88	-2.67	-3.08	0.10	0.02	0.09	0.02	3.32	3.36	0.34
3	SM	11.40	13.90	D	5.10	5.88	-2.67	-3.08	2.62	0.79	2.14	0.64	3.36	4.61	10.35
4	CL	13.90	20.60	U	8.10	0.00	0.00	0.00	8.66	5.31	1.88	0.82	8.10	8.10	70.14
5	SM	20.60	23.50	D	5.10	6.14	-2.75	-3.32	9.64	9.03	-7.34	-6.99	11.84	17.31	147.92

$V_a = 237.70$

▼開挖側潛在破壞面抗剪力計算

地層	地層	D_1	D_2	排水	γ_{t}	c'	φ'	S_{u1}	S_{u2}	θ_1	θ_2	σ_{vp1}	σ_{vp2}	$\sigma_{vp1}{}^{\prime}$	σ_{vp2} '
編號	代號	(m)	(m)	類型	(tf/m ³)	(tf/m^2)	(deg.)	(tf/m^2)	(tf/m^2)	(deg.)	(deg.)	(tf/m^2)	(tf/m^2)	(tf/m^2)	(tf/m^2)
1	CL	0.00	3.00	U	1.90	-	-	4.40	4.40	-	-	-	-	-	-
1	CL	3.00	4.90	U	1.90	-	-	4.40	4.40	-	-	-	-	-	-
2	GW	4.90	8.00	D	2.30	0.00	35.00	-	-	-	-	-	-	-	-
2	GW	8.00	11.30	D	2.30	0.00	35.00	-	-	-	-	-	-	-	-
3	SM	11.30	11.40	D	1.94	0.00	31.60	-	-	-	-	-	-	-	-
3	SM	11.40	13.90	D	1.94	0.00	31.60	-	-	12.67	22.37	0.00	4.85	0.00	2.35
4	CL	13.90	20.60	U	1.90	-	-	8.10	8.10	22.37	54.38	4.85	17.58	2.35	8.38
5	SM	20.60	23.50	D	1.95	0.00	32.70	-	-	54.38	90.00	17.58	23.24	8.38	11.14
地層	地層	\mathbf{D}_1	D_2	排水	C_{1p}	C_{2p}	C_{3p}	C_{4p}	I_{1p}	I_{2p}	I_{3p}	I_{4p}	τ_{p1}	τ_{p2}	V_p
編號	代號	(m)	(m)	類型	(tf/m)	(tf/m)	(tf/m)	(tf/m)	(m)	(m)	(m)	(m)	(tf/m)	(tf/m)	(tf)
		(111)	(111)		(11/111)	()	,	,		` '	()	(111)	(11/111)	(11/111)	(61)
1	CL	0.00	3.00	U	-	-	-	-	-	-	-	-	-	-	-
1	CL CL	. ,	` ′		- -	-	-	-	-	-	-	-		- -	
		0.00	3.00	U			- - -	- - -	- - -	- - -			- - -	- - -	
1	CL	0.00 3.00	3.00 4.90	U U	- - -	- - -	- - -	- - -	- - -	- - -	- - -		- - -	- - -	
1 2	CL GW	0.00 3.00 4.90	3.00 4.90 8.00	U U D	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	
1 2 2	CL GW GW	0.00 3.00 4.90 8.00	3.00 4.90 8.00 11.30	U U D D	- - - - - - -7.46	- - - - 34.01	- - - - -5.49	- - - - 25.05	- - - - 2.62	- - - - - 0.79	- - - - - 2.14	- - - - - 0.64	- - - - - 0.00	- - - - - 8.36	
1 2 2 3	CL GW GW SM	0.00 3.00 4.90 8.00 11.30	3.00 4.90 8.00 11.30 11.40	U U D D	- - - -	- - - -	- - - -	- - - -	- - - - 2.62 8.66	- - - - 0.79 5.31	- - - -	- - - -	- - - -	- - - -	- - - -
1 2 2 3 3	CL GW GW SM	0.00 3.00 4.90 8.00 11.30 11.40	3.00 4.90 8.00 11.30 11.40 13.90	U U D D D	- - - - -7.46	- - - - 34.01	- - - - -5.49	- - - - 25.05			- - - - 2.14	- - - - - 0.64	- - - - 0.00	- - - - 8.36	- - - - 11.45

$V_p = 188.72$

▼驅動土塊重量計算

地層	地層	D_1	D_2	γ_{t}	W	L _c	M_c
編號	代號	(m)	(m)	(tf/m^3)	(tf)	(m)	(tf-m)
1	CL	0.00	3.00	1.90	88.35	7.75	684.71
1	CL	3.00	4.90	1.90	55.96	7.75	433.65
2	GW	4.90	8.00	2.30	110.52	7.75	856.49
2	GW	8.00	11.30	2.30	116.75	7.69	897.97
3	SM	11.30	11.40	1.94	2.94	7.57	22.22
3	SM	11.40	13.90	1.94	-	-	-
4	CL	13.90	20.60	1.90	-	-	-
5	SM	20.60	23.50	1.95	-	-	-
				$\Sigma W =$	374.51	$\Sigma M_c =$	2895.04

▼超載引起之驅動力計算

\mathbf{x}_1	x ₂	q_{v}	P_{qv}	L_{qv}	M_{qv}
(m)	(m)	(tf/m^2)	(tf)	(m)	(tf-m)
0.00	15.50	5.00	77.50	7.75	600.63

$$\Sigma M_{qv} = 600.63$$

▼塑性隆起檢核

$$FS_h = [(V_a + V_p) \times (D_L - D_s)]/(\Sigma M_c + \Sigma M_{qv}) = 1.89$$

$$FS_{h,r} = 1.2$$

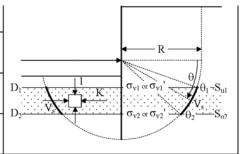
$$FS_h \geq FS_{h,r} \ OK \ !$$

▼分析計算說明

▼計算單位

以上分析所稱之力量、彎矩或應力,係指每單位寬度(1m)之力量、彎矩或應力

▼基本分析條件


$$D_s = 8(m)$$
, $D_e = 11.4(m)$, $D_L = 23.5(m)$

▼潛在破壞面抗剪力計算

以有效應力法(砂層)計算潛在破壞面抗剪力時,擋土側及開挖側之側向土壓力係數分別採用 K_a 及 K_p 抗剪力 V_a = $C_{1a}I_{1a}$ + $C_{2a}I_{2a}$ + $C_{3a}I_{3a}$ + $C_{4a}I_{4a}$, V_p = $C_{1p}I_{1p}$ + $C_{2p}I_{2p}$ + $C_{3p}I_{3p}$ + $C_{4p}I_{4p}$

	$V_s = C_1 I_1 + C_2 I_2 + C_3 I_3 + C_4 I_4$		
C ₁	$c^* + \frac{1+K}{2}\sigma_{v1}t^* - \frac{1+K}{2}R\gamma_t t^* \sin\theta_1 = c^* + \sigma_{v1}t^* - R\gamma_t t^* \sin\theta_1$		不
C ₂	$\frac{1+K}{2}R\gamma_t t^* = R\gamma_t t^*$		排水
C ₃	$-\frac{1-K}{2}\sigma_{v_1}t^* + \frac{1-K}{2}R\gamma_t t^* \sin\theta_1 = 0$		地
C ₄	$-\frac{1-K}{2}R\gamma_{t}t^{*} = 0$		層
	$c' + \frac{1 + K_a}{2} \sigma_{v_1}' \tan \phi' - \frac{1 + K_a}{2} R \gamma' \tan \phi' \sin \theta_1 - c' K_{ac} \tan \phi'$	K=K _a	
\mathbf{C}_1	$c' + \frac{1 + K_p}{2} \sigma_{v1}' \tan \phi' - \frac{1 + K_p}{2} R \gamma' \tan \phi' \sin \theta_1 + c' K_{po} \tan \phi'$	K=K _p	
	$c' + \frac{1+K}{2}\sigma_{v_1}'\tan\phi' - \frac{1+K}{2}R\gamma'\tan\phi'\sin\theta_1$	K=1 K=K _o	
C_2	$\frac{1+K}{2}R\gamma'\tan\phi'$		排 水
	$-\frac{1-K_{a}}{2}\sigma_{v_{1}}'\tan\phi'+\frac{1-K_{a}}{2}R\gamma'\tan\phi'\sin\theta_{1}-c'K_{ac}\tan\phi'$	K=K _a	地層
C ₃	$-\frac{1-K_{p}}{2}\sigma_{v_{1}}'\tan\phi'+\frac{1-K_{p}}{2}R\gamma'\tan\phi'\sin\theta_{1}+c'K_{pc}\tan\phi'$	K=K _p	
	$-\frac{1-K}{2}\sigma_{v_1}'\tan\phi' + \frac{1-K}{2}R\gamma'\tan\phi'\sin\theta_1$	K=1 K=K _o	
C ₄	$-\frac{1-K}{2}R\gamma'\tan\phi'$		

I_1	$R(\theta_2-\theta_1)$
I_2	$R(\cos\theta_1 - \cos\theta_2)$
I ₃	$R\left(\frac{2}{3}\cos^3\theta_1 - \frac{2}{3}\cos^3\theta_2 - \cos\theta_1 + \cos\theta_2\right)$
I_4	$\frac{R}{2}(\sin 2\theta_2 - \sin 2\theta_1)$

註:(1)於不排水地層中,K=1,
$$c^* = \frac{S_{u1}\sigma_{v2} - S_{u2}\sigma_{v1}}{\sigma_{v2} - \sigma_{v1}}$$
, $t^* = \frac{S_{u2} - S_{u1}}{\sigma_{v2} - \sigma_{v1}}$

(2)於排水地層中, $\gamma' = (\sigma_{v2}' - \sigma_{v1}')/(D_2 - D_1)$